Automorphisms of spatial curves
Bradáč, Ivan
Archivum Mathematicum, Tome 033 (1997), p. 213-243 / Harvested from Czech Digital Mathematics Library

Automorphisms of curves $y= y(x)$, $z=z(x)$ in ${\bold R}^3$ are investigated; i.e. invertible transformations, where the coordinates of the transformed curve $\bar y=\bar y(\bar x)$, $\bar z= \bar z(\bar x)$ depend on the derivatives of the original one up to some finite order $m$. While in the two-dimensional space the problem is completely resolved (the only possible transformations are the well-known contact transformations), the three-dimensional case proves to be much more complicated. Therefore, results (in the form of some systems of partial differential equations for the functions, determining the automorphisms) only for the special case $\bar x =x$ and order $m\leq 2$ are obtained. Finally, the problem of infinitesimal transformations is briefly mentioned.

Publié le : 1997-01-01
Classification:  58A17,  58A20,  58J72
@article{107612,
     author = {Ivan Brad\'a\v c},
     title = {Automorphisms of spatial curves},
     journal = {Archivum Mathematicum},
     volume = {033},
     year = {1997},
     pages = {213-243},
     zbl = {0915.58003},
     mrnumber = {1478774},
     language = {en},
     url = {http://dml.mathdoc.fr/item/107612}
}
Bradáč, Ivan. Automorphisms of spatial curves. Archivum Mathematicum, Tome 033 (1997) pp. 213-243. http://gdmltest.u-ga.fr/item/107612/

Lie S. Geometrie der Berührungstransformationen, erster Band, Leipzig 1896. | Zbl 0406.01015

Anderson R.; Ibragimov N. Lie-Bäcklund transformations in applications, Philadelphia 1979. (1979) | MR 0520395 | Zbl 0447.58001

Ibragimov N. Transformation groups in mathematical physics, Moscow, Nauka, 1983 (Russian) (1983) | MR 0734307 | Zbl 0529.53014

Carathèodory C. Variationsrechnung und partielle Differentialgleichungen erster Ordnung, Band I, Theorie der partielen Differentialgleichungen erster Ordnung, Zweite Auflage, Leipzig 1956. (1956) | MR 0089338 | Zbl 0070.31601

Shlomo Sternberg Lectures on Differential Geometry, Prentice-Hall, Inc. Englewood Cliffs, New Jersey, 1965. (1965) | MR 0193578

Chrastina J. From Elementary Algebra to Bäcklund Transformations, Czechoslovak Mathematical Journal, 40 (115) 1990, Praha. (1990) | MR 1046292 | Zbl 0726.58041

Chrastina J. Formal theory of differential equations, (to appear). | MR 1656843 | Zbl 0906.35002

Chrastina J. On the Equivalence of Variational Problems, I, Journal of Differential Equations, Vol. 98, No. 1, July 1992. (1992) | MR 1168972 | Zbl 0764.49008

Stormark O. Formal and local solvability of partial differential equations, Trita-Mat-1989-11, Mathematics, ch. 1–12, Royal Institute of Technology, Stockholm 1989. (1989)

Pressley A.; Segal G. Loop Groups, Clarendon Press, Oxford 1986, Russian translation Moscow, Mir, 1990. (1986) | MR 1071737 | Zbl 0618.22011

Cartan E. Les systèmes différentiels extérieurs et leurs applications géometriques, Gauthier-Villars, Paris 1945, Russian translation Moscow University 1962. (1945) | MR 0016174 | Zbl 0063.00734

Olver P. Applications of Lie Groups to Differential Equations, 1986, Springer-Verlag, Russian translation Moscow, Mir, 1989. (1989) | MR 0836734 | Zbl 0743.58003

Vinogradov A. M.; Krasilščik I. S.; Lygačin V. V. Introduction into the geometry of nonlinear differential equations, Moscow 1986 (Russian). (1986)