For linear differential equations of the second order in the Jacobi form \[ y^{\prime \prime } + p(x)y = 0 \] O. Borvka introduced a notion of dispersion. Here we generalize this notion to certain classes of linear differential equations of arbitrary order. Connection with Abel’s functional equation is derived. Relations between asymptotic behaviour of solutions of these equations and distribution of zeros of their solutions are also investigated.
@article{107605, author = {Franti\v sek Neuman}, title = {Dispersions for linear differential equations of arbitrary order}, journal = {Archivum Mathematicum}, volume = {033}, year = {1997}, pages = {147-155}, zbl = {0914.34010}, mrnumber = {1464309}, language = {en}, url = {http://dml.mathdoc.fr/item/107605} }
Neuman, František. Dispersions for linear differential equations of arbitrary order. Archivum Mathematicum, Tome 033 (1997) pp. 147-155. http://gdmltest.u-ga.fr/item/107605/
O rozložení nulových bodů řešení lineární diferenciální rovnice $y^{\prime \prime }=Q(t)y$ a jejich derivací, Acta F. R. N. Univ. Comenian 5 (1961), 465–474. (1961)
Linear Differential Transformations of the Second Order, The English Univ. Press, London, 1971. (1971) | MR 0463539
On differentiable solutions of a functional equation, Ann. Polon. Math. 13 (1963), 133–138. (1963) | MR 0153998
Functional Equations in a Single Variable, PWN, Warszawa, 1968. (1968) | MR 0228862 | Zbl 0196.16403
Distribution of zeros of solutions of $y^{\prime \prime } = q(t)y$ in relation to their behaviour in large, Studia Sci. Math. Hungar 8 (1973), 177–185. (1973) | MR 0333344 | Zbl 0286.34050
Global Properties of Linear Ordinary Differential Equations, Mathematics and Its Applications (East European Series) 52, Kluwer Acad. Publ., Dordrecht-Boston-London, 1991, ISBN 0-7923-1269-4. (1991, ISBN 0-7923-1269-4) | MR 1192133