@article{107604, author = {Jean Mawhin}, title = {Some remarks on the $\Omega $-stability for families of polynomials}, journal = {Archivum Mathematicum}, volume = {033}, year = {1997}, pages = {139-145}, zbl = {0913.93063}, mrnumber = {1464308}, language = {en}, url = {http://dml.mathdoc.fr/item/107604} }
Mawhin, Jean. Some remarks on the $\Omega $-stability for families of polynomials. Archivum Mathematicum, Tome 033 (1997) pp. 139-145. http://gdmltest.u-ga.fr/item/107604/
Generalized Nyquist tests for robust stability: Frequency domain generalizations of Kharitonov’s theorem, in Robustness in Identification and Control, Milanese, Tempo and Vicino ed., Plenum Press, New York, 1989, 79-96. (1989) | MR 1041090
Stability and Asymptotic Behavior of Differential Equations, Heath, Boston, 1965. (1965) | MR 0190463 | Zbl 0154.09301
The method of symmetric and Hermitian forms in the theory of the separation of the roots of algebraic equations, Linear and Multilinear Algebra 10 (1981), 265-308. (1981) | MR 0638124
Degree Theory, Cambridge University Press, Cambridge, 1978. (1978) | MR 0493564 | Zbl 0367.47001
Geometry of Polynomials, American Math. Soc. Providence, RI, 1966. (1966) | MR 0225972 | Zbl 0162.37101
Parametric Uncertainty and Feedback Complexity in Linear Control Systems, PhD. Thesis Kungl Tekniska Högskolan, ISRN KHT/OPT SYST/DA-91/13-SE, 1991. (1991) | MR 2714552
Über Potenzreihen, die im Innern des Einheitskreises beschrankt sind, J. Reine Angew. Math. 148 (1918), 122-145. (1918)
Über algebraische Gleichungen, die nur Wurzeln mit negativen Realteilen besitzen, Z. Angew. Math. Mech. 1 (1921), 307-311. (1921)
On the $\Gamma $-stability of systems of differential equations in the Routh-Hurwitz and the Schur-Cohn cases, Bull. Belgian Math. Soc.-Simon Stevin 3 (1996), 363-368. (1996) | MR 1408281 | Zbl 0856.34061