The study of diffeomorphism group actions requires methods of infinite dimensional analysis. Really convenient tools can be found in the Frölicher - Kriegl - Michor differentiation theory and its geometrical aspects. In terms of it we develop the calculus of various types of one parameter diffeomorphism groups in infinite dimensional spaces with smooth structure. Some spectral properties of the derivative of exponential mapping for manifolds are given.
@article{107587, author = {Andrzej Zajtz}, title = {Calculus of flows on convenient manifolds}, journal = {Archivum Mathematicum}, volume = {032}, year = {1996}, pages = {355-372}, zbl = {0881.58012}, mrnumber = {1441405}, language = {en}, url = {http://dml.mathdoc.fr/item/107587} }
Zajtz, Andrzej. Calculus of flows on convenient manifolds. Archivum Mathematicum, Tome 032 (1996) pp. 355-372. http://gdmltest.u-ga.fr/item/107587/
Linear spaces and differentiation theory, Pure and Applied Mathematics, J. Wiley, Chichester, 1988. (1988) | MR 0961256 | Zbl 0657.46034
Free subgroups of diffeomorphism groups, Fundamenta Math. 131(1988), 103-121. (1988) | MR 0974661 | Zbl 0666.58011
Derivative of the exponential mapping for infinite dimensional Lie groups, Annals Global Anal. Geom. 11(1993), 213-220. (1993) | MR 1237454 | Zbl 0836.22028
The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc. 7(1982), 65-222. (1982) | MR 0656198 | Zbl 0499.58003
Natural operations in differential geometry, Springer-Verlag, Berlin, Heidelberg, New York, 1993. (1993) | MR 1202431 | Zbl 0782.53013
Regular infinite dimensional Lie groups, to appear, J. of Lie Theory, 37. | MR 1450745 | Zbl 0893.22012
Characterization of Anosov diffeomorphisms, Ind.Math., vol. 30, 5(1968), 473-483. (1968) | MR 0248879 | Zbl 0165.57001
On regular Fréchet Lie groups IV. Definitions and fundamental theorems, Tokyo J. Math. 5(1982), 365-398. (1982) | MR 0688131
Semigroups of linear operators and applications to Partial Differential Equations, Springer-Verlag New York, 1983. (1983) | MR 0710486 | Zbl 0516.47023