A Cartan connection associated with a pair $P(M,G^{\prime })\subset P(M,G)$ is defined in the usual manner except that only the injectivity of $\omega :T(P^{\prime })\rightarrow T(G)_{e}$ is required. For an $r$-th order connection associated with a bundle morphism $\Phi :P^{\prime }\rightarrow P$ the concept of Cartan order $q\le r$ is defined, which for $q=r=1, \Phi :P^{\prime }\subset P$, and $\dim {M}=\dim {G/G^{\prime }}$ coincides with the classical definition. Results are obtained concerning the Cartan order of $r$-th order connections that are the product of $r$ first order (Cartan) connections.
@article{107586, author = {Juraj Virsik}, title = {Higher order Cartan connections}, journal = {Archivum Mathematicum}, volume = {032}, year = {1996}, pages = {343-354}, zbl = {0881.53014}, mrnumber = {1441404}, language = {en}, url = {http://dml.mathdoc.fr/item/107586} }
Virsik, Juraj. Higher order Cartan connections. Archivum Mathematicum, Tome 032 (1996) pp. 343-354. http://gdmltest.u-ga.fr/item/107586/
Extension du calcul des jets aux jets non holonomes, C.R.A.S. Paris 239(1954), 1762–1764. | MR 0066734 | Zbl 0057.15603
Sur les connexions d’ordre supérieur, Atti $V^0$ Cong. Un. Mat. Italiana, Pavia-Torino, 1956, 326–328.
Transformation groups in differential geometry, Ergebnisse der Mathematik 70, Springer Verlag, 1972. | MR 0355886 | Zbl 0829.53023
Foundations of differential geometry, Vol. 1, Wiley-Interscience, 1963. | MR 0152974
Some higher order operations with connections, Czech. Math. J. 24(99) (1974), 311–330. | MR 0356114
On some operations with connections, Math. Nachrichten 69(1975), 297–306. | MR 0391157
Natural Operations in Differential Geometry, Springer-Verlag, 1993. | MR 1202431
Total connections in Lie groupoids, Arch. Math. (Brno) 31 (1995), 183-200. (1995) | MR 1368257 | Zbl 0841.53024
Bunch connections, Diff. Geom. and Applications, Proc. Conf. 1995, Brno, Czech republic, Masaryk University, Brno (1996), 215-229. | MR 1406340 | Zbl 0864.53017