In this paper we prove the existence of periodic solutions for a class of nonlinear evolution inclusions defined in an evolution triple of spaces $(X,H,X^{*})$ and driven by a demicontinuous pseudomonotone coercive operator and an upper semicontinuous multivalued perturbation defined on $T\times X$ with values in $H$. Our proof is based on a known result about the surjectivity of the sum of two operators of monotone type and on the fact that the property of pseudomonotonicity is lifted to the Nemitsky operator, which we prove in this paper.
@article{107574, author = {Dimitrios A. Kandilakis and Nikolaos S. Papageorgiou}, title = {Periodic solutions for nonlinear evolution inclusions}, journal = {Archivum Mathematicum}, volume = {032}, year = {1996}, pages = {195-209}, zbl = {0908.34043}, mrnumber = {1421856}, language = {en}, url = {http://dml.mathdoc.fr/item/107574} }
Kandilakis, Dimitrios A.; Papageorgiou, Nikolaos S. Periodic solutions for nonlinear evolution inclusions. Archivum Mathematicum, Tome 032 (1996) pp. 195-209. http://gdmltest.u-ga.fr/item/107574/
Real Analysis and Probability, Academic Press, New York (1972). | MR 0435320
Periodic solutions of semilinear equations of evolution of compact type, J. Math. Anal. Appl. 82 (1981), 33-48. | MR 0626739 | Zbl 0465.34014
Operateurs Maximaux Monotones, North Holland, Amsterdam (1973). | Zbl 0252.47055
Existence of periodic solutions for nonlinear equations of evolution, Proc. Nat. Acad. Sci. USA 53 (1965), 1100-1103. | MR 0177295 | Zbl 0135.17601
Pseudomonotone operators and nonlinear elliptic boundary value problems on unbounded domains, Proc. Nat. Acad. Sci. USA 74 (1977), 2659-2661. | MR 0445124
Variational methods for nondifferentiable functions and their applications to partial differential equations, J. Math. Anal. Appl. 80 (1981), 102-129. | MR 0614246
On continuous approximations for multifunctions, Pacific J. Math. 123 (1986), 9-31. | MR 0834135
Vector Measures, Math. Surveys, 15, AMS Providence, Rhode Island (1977). | MR 0453964
Topics in Metric Fixed Point Theory, Cambridge Univ. Press, Cambridge (1990). | MR 1074005
Pseudomonotonicity and the Leray-Lions condition, Differential and Integral Equations 6 (1993), 37-45. | MR 1190164
Existence of periodic solutions for nonlinear evolution equations in Hilbert spaces, Proc. AMS 120 (1994), 185-192. | MR 1174494 | Zbl 0795.34051
On the existence of periodic solutions for a class of nonlinear evolution inclusions, Bolletino UMI 7-B (1993), 591-605. | MR 1244409
Galerkin approximations for nonlinear evolution inclusions, Comm. Math. Univ. Carolinae 35 (1994), 705-720. | MR 1321241
Quelques Methods de Resolution des Problemes aux Limites Nonlineaires, Dunod, Paris (1969).
Convergence theorems for Banach space valued integrable multifunctions, Inter. J. Math. and Math. Sci. 10 (1987), 433-464. | MR 0896595 | Zbl 0619.28009
On measurable multifunctions with applications to random multivalued equations, Math. Japonica 32 (1987), 437-464. | MR 0914749 | Zbl 0634.28005
Periodic solutions for semilinear evolution equations, Nonl. Anal. TMA 3 (1979), 221-235.
Nonlinear evolution equations in Banach spaces, Proc. AMS 109 (1990), 653-661.
Periodic solutions for nonlinear evolution equations in a Banach space, Proc. AMS 109 (1990), 653-661. | MR 1015686 | Zbl 0701.34074
Survey of measurable selection theorems, SIAM J. Control Opt. 15 (1977), 859-903. | MR 0486391 | Zbl 0427.28009
Nonlinear Functinal Analysis and its Applications, Springer-Verlag, New York (1990).