Periodic solutions for nonlinear evolution inclusions
Kandilakis, Dimitrios A. ; Papageorgiou, Nikolaos S.
Archivum Mathematicum, Tome 032 (1996), p. 195-209 / Harvested from Czech Digital Mathematics Library

In this paper we prove the existence of periodic solutions for a class of nonlinear evolution inclusions defined in an evolution triple of spaces $(X,H,X^{*})$ and driven by a demicontinuous pseudomonotone coercive operator and an upper semicontinuous multivalued perturbation defined on $T\times X$ with values in $H$. Our proof is based on a known result about the surjectivity of the sum of two operators of monotone type and on the fact that the property of pseudomonotonicity is lifted to the Nemitsky operator, which we prove in this paper.

Publié le : 1996-01-01
Classification:  34A60,  34C25,  34G20,  47H15,  47N20
@article{107574,
     author = {Dimitrios A. Kandilakis and Nikolaos S. Papageorgiou},
     title = {Periodic solutions for nonlinear evolution inclusions},
     journal = {Archivum Mathematicum},
     volume = {032},
     year = {1996},
     pages = {195-209},
     zbl = {0908.34043},
     mrnumber = {1421856},
     language = {en},
     url = {http://dml.mathdoc.fr/item/107574}
}
Kandilakis, Dimitrios A.; Papageorgiou, Nikolaos S. Periodic solutions for nonlinear evolution inclusions. Archivum Mathematicum, Tome 032 (1996) pp. 195-209. http://gdmltest.u-ga.fr/item/107574/

Real Analysis and Probability, Academic Press, New York (1972). | MR 0435320

Periodic solutions of semilinear equations of evolution of compact type, J. Math. Anal. Appl. 82 (1981), 33-48. | MR 0626739 | Zbl 0465.34014

Operateurs Maximaux Monotones, North Holland, Amsterdam (1973). | Zbl 0252.47055

Existence of periodic solutions for nonlinear equations of evolution, Proc. Nat. Acad. Sci. USA 53 (1965), 1100-1103. | MR 0177295 | Zbl 0135.17601

Pseudomonotone operators and nonlinear elliptic boundary value problems on unbounded domains, Proc. Nat. Acad. Sci. USA 74 (1977), 2659-2661. | MR 0445124

Variational methods for nondifferentiable functions and their applications to partial differential equations, J. Math. Anal. Appl. 80 (1981), 102-129. | MR 0614246

On continuous approximations for multifunctions, Pacific J. Math. 123 (1986), 9-31. | MR 0834135

Vector Measures, Math. Surveys, 15, AMS Providence, Rhode Island (1977). | MR 0453964

Topics in Metric Fixed Point Theory, Cambridge Univ. Press, Cambridge (1990). | MR 1074005

Pseudomonotonicity and the Leray-Lions condition, Differential and Integral Equations 6 (1993), 37-45. | MR 1190164

Existence of periodic solutions for nonlinear evolution equations in Hilbert spaces, Proc. AMS 120 (1994), 185-192. | MR 1174494 | Zbl 0795.34051

On the existence of periodic solutions for a class of nonlinear evolution inclusions, Bolletino UMI 7-B (1993), 591-605. | MR 1244409

Galerkin approximations for nonlinear evolution inclusions, Comm. Math. Univ. Carolinae 35 (1994), 705-720. | MR 1321241

Quelques Methods de Resolution des Problemes aux Limites Nonlineaires, Dunod, Paris (1969).

Convergence theorems for Banach space valued integrable multifunctions, Inter. J. Math. and Math. Sci. 10 (1987), 433-464. | MR 0896595 | Zbl 0619.28009

On measurable multifunctions with applications to random multivalued equations, Math. Japonica 32 (1987), 437-464. | MR 0914749 | Zbl 0634.28005

Periodic solutions for semilinear evolution equations, Nonl. Anal. TMA 3 (1979), 221-235.

Nonlinear evolution equations in Banach spaces, Proc. AMS 109 (1990), 653-661.

Periodic solutions for nonlinear evolution equations in a Banach space, Proc. AMS 109 (1990), 653-661. | MR 1015686 | Zbl 0701.34074

Survey of measurable selection theorems, SIAM J. Control Opt. 15 (1977), 859-903. | MR 0486391 | Zbl 0427.28009

Nonlinear Functinal Analysis and its Applications, Springer-Verlag, New York (1990).