Oscillation and nonoscillation of Emden-Fowler type equations of second order
Lomtatidze, Alexander
Archivum Mathematicum, Tome 032 (1996), p. 181-193 / Harvested from Czech Digital Mathematics Library

Oscillation and nonoscillation criteria are established for the equation $$u''+p(t)|u|^{\alpha}|u'|^{1-\alpha}\operatorname{sgn} u=0,$$ where $\alpha\in ]0,1]$, and $p:[0,+\infty[\to [0,+\infty[$ is a locally summable function.

Publié le : 1996-01-01
Classification:  34C10,  34C15
@article{107573,
     author = {Alexander Lomtatidze},
     title = {Oscillation and nonoscillation of Emden-Fowler type equations of second order},
     journal = {Archivum Mathematicum},
     volume = {032},
     year = {1996},
     pages = {181-193},
     zbl = {0908.34023},
     mrnumber = {1421855},
     language = {en},
     url = {http://dml.mathdoc.fr/item/107573}
}
Lomtatidze, Alexander. Oscillation and nonoscillation of Emden-Fowler type equations of second order. Archivum Mathematicum, Tome 032 (1996) pp. 181-193. http://gdmltest.u-ga.fr/item/107573/

Fite W. B. Concerning the zeros of the solutions of certain differential equations, Trans. Amer. Math. Soc., vol. 19 (1917), pp. 341–352. (1917) | MR 1501107

Hille E. Nonoscillation theorems, Trans. Amer. Math. Soc., vol. 64 (1948), pp. 234–252. (1948) | MR 0027925

Del Pino M.; Elgueta M.; Manasevich R. Generalized Hartman’s oscillation result for $(|x^{\prime }|^{p-2}x^{\prime })^{\prime }+c(t)|x|^{p-2}=0, p>1.$, Houston Journal of Math., vol. 17 , No 1, (1991) pp. 63–70. (1991) | MR 1107187 | Zbl 0733.34039

Lomtatidze A. Oscillation and nonoscillation criteria for second order linear differential equation, Georgian Math. J., vol. 3, No. 2, (1997) pp. 129-138. (1997) | MR 1439591

Kiguradze I.T.; Shekhter B. L. Singular boundary value problems for second-order differential equations, in: “Current Problems in Mathematics: Newest Results”, Vol. 3, pp. 3–103, Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuzn. Inst. Nauchn. i Tekhn. Inform., Moscow, 1987. [in Russian] (1987) | MR 0925830