Oscillation and nonoscillation criteria are established for the equation $$u''+p(t)|u|^{\alpha}|u'|^{1-\alpha}\operatorname{sgn} u=0,$$ where $\alpha\in ]0,1]$, and $p:[0,+\infty[\to [0,+\infty[$ is a locally summable function.
@article{107573, author = {Alexander Lomtatidze}, title = {Oscillation and nonoscillation of Emden-Fowler type equations of second order}, journal = {Archivum Mathematicum}, volume = {032}, year = {1996}, pages = {181-193}, zbl = {0908.34023}, mrnumber = {1421855}, language = {en}, url = {http://dml.mathdoc.fr/item/107573} }
Lomtatidze, Alexander. Oscillation and nonoscillation of Emden-Fowler type equations of second order. Archivum Mathematicum, Tome 032 (1996) pp. 181-193. http://gdmltest.u-ga.fr/item/107573/
Concerning the zeros of the solutions of certain differential equations, Trans. Amer. Math. Soc., vol. 19 (1917), pp. 341–352. (1917) | MR 1501107
Nonoscillation theorems, Trans. Amer. Math. Soc., vol. 64 (1948), pp. 234–252. (1948) | MR 0027925
Generalized Hartman’s oscillation result for $(|x^{\prime }|^{p-2}x^{\prime })^{\prime }+c(t)|x|^{p-2}=0, p>1.$, Houston Journal of Math., vol. 17 , No 1, (1991) pp. 63–70. (1991) | MR 1107187 | Zbl 0733.34039
Oscillation and nonoscillation criteria for second order linear differential equation, Georgian Math. J., vol. 3, No. 2, (1997) pp. 129-138. (1997) | MR 1439591
Singular boundary value problems for second-order differential equations, in: “Current Problems in Mathematics: Newest Results”, Vol. 3, pp. 3–103, Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuzn. Inst. Nauchn. i Tekhn. Inform., Moscow, 1987. [in Russian] (1987) | MR 0925830