@article{107568,
author = {Old\v rich Kowalski and Masami Sekizawa},
title = {Local isometry classes of Riemannian $3$-manifolds with constant Ricci eigenvalues $\rho\sb 1=\rho\sb 2\neq \rho\sb 3 > 0$},
journal = {Archivum Mathematicum},
volume = {032},
year = {1996},
pages = {137-145},
zbl = {0903.53015},
mrnumber = {1407345},
language = {en},
url = {http://dml.mathdoc.fr/item/107568}
}
Kowalski, Oldřich; Sekizawa, Masami. Local isometry classes of Riemannian $3$-manifolds with constant Ricci eigenvalues $\rho\sb 1=\rho\sb 2\neq \rho\sb 3 > 0$. Archivum Mathematicum, Tome 032 (1996) pp. 137-145. http://gdmltest.u-ga.fr/item/107568/
Three-dimensional Riemannian manifolds with constant principal Ricci curvatures $\rho _1=\rho _2\ne \rho _3$, preprint, 1995, to appear in J.Math.Phys. (1995) | MR 1400834
An explicit classification of 3-dimensional Riemannian spaces satisfying $R(X,Y)\cdot R=0$, preprint, 1991, to appear in Czech Math.J. (1991) | MR 1408298
A classification of Riemannian 3-manifolds with constant principal Ricci curvatures $\rho _1=\rho _2\ne \rho _3$, Nagoya Math.J. 132(1993), 1-36. (1993) | MR 1253692
Riemannian 3-manifolds with $c$-conullity two, preprint, 1995, to appear in Bolletino U.M.I., 1996. (1995) | MR 1456259
Riemannian three-metrics with degenerate Ricci tensor, J.Math.Phys. 36(1995), 362-369. (1995) | MR 1308650