Higher order contact of real curves in a real hyperquadric
Villarroel, Yuli
Archivum Mathematicum, Tome 032 (1996), p. 57-73 / Harvested from Czech Digital Mathematics Library

Let $\Phi $ be an hermitian quadratic form, of maximal rank and index $(n,1)$% , defined over a complex $(n+1)$ vectorial space $V$. Consider the real hyperquadric defined in the complex projective space $P^nV$ by \[ Q=\{[\varsigma ]\in P^nV,\;\Phi (\varsigma )=0\}, \] let $G$ be the subgroup of the special linear group which leaves $Q$ invariant and $D$ the $(2n-2)$ distribution defined by the Cauchy Riemann structure induced over $Q$. We study the real regular curves of constant type in $Q$, transversal to $D$, finding a complete system of analytic invariants for two curves to be locally equivalent under transformations of $G$.

Publié le : 1996-01-01
Classification:  32F40,  53B25,  53C15
@article{107561,
     author = {Yuli Villarroel},
     title = {Higher order contact of real curves in a real hyperquadric},
     journal = {Archivum Mathematicum},
     volume = {032},
     year = {1996},
     pages = {57-73},
     zbl = {0870.53025},
     mrnumber = {1399840},
     language = {en},
     url = {http://dml.mathdoc.fr/item/107561}
}
Villarroel, Yuli. Higher order contact of real curves in a real hyperquadric. Archivum Mathematicum, Tome 032 (1996) pp. 57-73. http://gdmltest.u-ga.fr/item/107561/

Bredon G.E. Introduction to Compact Transformations groups, Academic Press, New York (1972). (1972) | MR 0413144

Cartan E. Sur la géométrie pseudo-conforme des hypersurfaces de deux variables complexes, I. II, Ouvres II, 2, 1231-1304; ibid III,2, 1217-1238.

Cartan E. Théorie des groupes finis el la géométrie différentielle traitées par la Methode du repère mobile, Gauthier-Villars, Paris, (1937). (1937)

Chern S. S.; Moser J. K. Real hypersurfaces in complex manifolds, Acta mathematica 133, (1975), 219-271. (1975) | MR 0425155 | Zbl 0302.32015

Chern S. S.; Cowen J. M. Frenet frames along holomorphic curves, Topics in Differential Geometry, 1972-1973, pp. 191-203. Dekker, New York, 1974. (1972) | MR 0361170

Ehresmann C. Les prolongements d’un space fibré diferéntiable, C.R. Acad. Sci. Paris, 240 (1955), 1755-1757. (1955) | MR 0071083

Green M. L. The moving frame, Differential invariants and rigity theorems for curves in homogeneous spaces, Duke Math. Journal, Vol 45, No.4(1978), 735-779. (1978) | MR 0518104

Griffiths P. On Cartan’s method of Lie groups and moving frames as applied to existence and uniqueness questions in differential geometry, Duke Math. J. 41(1974), 775-814. (1974) | MR 0410607

Hermann R. Equivalence invariants for submanifolds of Homogeneous Spaces, Math. Annalen 158, 284-289 (1965). (1965) | MR 0203653 | Zbl 0125.39502

Hermann R. Existence in the large of parallelism homomorphisms, Trans. Am. Math. Soc. 108, 170-183 (1963). (1963) | MR 0151924

Jensen G. R. Higher Order Contact of Submanifolds of Homogeneous Spaces, Lectures notes in Math. Vol. 610, Springer-Verlag, New York (1977). (1977) | MR 0500648 | Zbl 0356.53005

Jensen G.R. Deformation of submanifolds of homogeneous spaces, J. of Diff. Geometry, 16(1981), 213-246. (1981) | MR 0638789 | Zbl 0473.53044

Kolář I. Canonical forms on the prolongations of principle fibre bundles, Rev. Roum. Math. Pures et Appl., Bucarest, Tome XVI, No.7, (1971), 1091-1106. (1971) | MR 0301668

Rodrigues A. M. Contact and equivalence of submanifolds of homogeneous spaces, Aspects of Math. and its Applications. Elsevier Science Publishers B.V. (1986). (1986) | MR 2342861 | Zbl 0601.53017

Villarroel Y. Equivalencia de curvas, Acta Científica Venezolana. Vol. 37, No. 6, p. 625-631, (1987). (1987) | MR 0897828

Villarroel Y. Teoria de contacto y Referencial móvil, Public. Universidad Central de Venezuela. Dpto. de Matemática. 1991. (1991)