In the present paper we investigate a contact metric manifold satisfying (C) $(\bar{\nabla }_{\dot{\gamma }}R)(\cdot ,\dot{\gamma })\dot{\gamma }=0$ for any $\bar{\nabla }$-geodesic $\gamma $, where $\bar{\nabla }$ is the Tanaka connection. We classify the 3-dimensional contact metric manifolds satisfying (C) for any $\bar{\nabla }$-geodesic $\gamma $. Also, we prove a structure theorem for a contact metric manifold with $\xi $ belonging to the $k$-nullity distribution and satisfying (C) for any $\bar{\nabla }$-geodesic $\gamma $.
@article{107554, author = {Jong Taek Cho}, title = {A contact metric manifold satisfying a certain curvature condition}, journal = {Archivum Mathematicum}, volume = {031}, year = {1995}, pages = {319-333}, zbl = {0849.53030}, mrnumber = {1390592}, language = {en}, url = {http://dml.mathdoc.fr/item/107554} }
Cho, Jong Taek. A contact metric manifold satisfying a certain curvature condition. Archivum Mathematicum, Tome 031 (1995) pp. 319-333. http://gdmltest.u-ga.fr/item/107554/
Two natural generalizations of locally symmetric spaces, Diff. Geom. Appl. 2 (1992), 57-80. (1992) | MR 1244456
Contact manifolds in Riemannian geometry, Lecture Notes in Math. Springer-Verlag, Berlin-Heidelberg-New-York. 509 (1976), . (1976) | MR 0467588 | Zbl 0319.53026
A classification of 3-dimensional contact metric manifolds with $Q\phi =\phi Q$, Kodai Math.J. 13 (1990), 391-401. (1990) | MR 1078554
Three-dimensional locally symmetric contact metric manifolds, to appear in Boll.Un.Mat.Ital.. | MR 1083268
Symmetries and $\phi $-symmetric spaces, Tôhoku Math.J. 39 (1987), 373-383. (1987) | MR 0902576
Lecons sur la géométrie des espaces de Riemann, 2nd éd., Gauthier-Villars, Paris (1946). (1946) | MR 0020842
On some classes of almost contact metric manifolds, Tsukuba J. Math. 19 (1995), 201-217. (1995) | MR 1346762 | Zbl 0835.53054
On some classes of contact metric manifolds, Rend.Circ.Mat. Palermo XLIII (1994), 141–160. (1994) | MR 1305332 | Zbl 0817.53019
Generalizations of locally symmetric spaces and locally $\phi $-symmetric spaces, Niigata Univ. Doctorial Thesis (1994), . (1994)
On contact metric manifolds, Tôhoku Math. J. 31 (1979), . (1979) | MR 0538923 | Zbl 0397.53026
Sasakian $\phi $-symmetric spaces, Tôhoku Math. J. 29 (1977), 91-113. (1977) | MR 0440472
On non-degenerate real hypersurfaces, graded Lie algebras and Cartan connections, Japan J. Math. 2 (1976), 131-190. (1976) | MR 0589931 | Zbl 0346.32010
Ricci curvature of contact Riemannian manifolds, Tôhoku Math. J. 40 (1988), 441-448. (1988) | MR 0957055
Variational problems on contact Riemannian manifolds,, Trans. Amer. Math. Soc. 314 (1989), 349-379. (1989) | MR 1000553 | Zbl 0677.53043
Homogeneous structures on Riemannian manifolds, London Math. Soc. Lecture Note Ser. 83, Cambridge University Press, London (1983), . (1983) | MR 0712664