Improvement of inequalities for the $(r,q)$-structures and some geometrical connections
Bálint, Vojtech ; Lauron, Philippe
Archivum Mathematicum, Tome 031 (1995), p. 283-289 / Harvested from Czech Digital Mathematics Library

The main results are the inequalities (1) and (6) for the minimal number of $(r,q)$-structure classes,which improve the ones from [3], and also some geometrical connections, especially the inequality (13).

Publié le : 1995-01-01
Classification:  05B30,  51E30,  52C10
@article{107549,
     author = {Vojtech B\'alint and Philippe Lauron},
     title = {Improvement of inequalities for the $(r,q)$-structures and some geometrical connections},
     journal = {Archivum Mathematicum},
     volume = {031},
     year = {1995},
     pages = {283-289},
     zbl = {0846.05012},
     mrnumber = {1390587},
     language = {en},
     url = {http://dml.mathdoc.fr/item/107549}
}
Bálint, Vojtech; Lauron, Philippe. Improvement of inequalities for the $(r,q)$-structures and some geometrical connections. Archivum Mathematicum, Tome 031 (1995) pp. 283-289. http://gdmltest.u-ga.fr/item/107549/

On a certain class of incidence structures, Práce a štúdie Vysokej Školy Dopravnej v Žiline 2 (1979), 97-106 (In Slovak; summary in English, German and Russian). (1979) | MR 0675948

On the number of circles determined by $n$ points in Euclidean plane, Acta Mathematica Hungarica 63 (3-4) (1994), 283-289. (1994) | MR 1261471

Some inequalities for the $(r,q)$-structures, STUDIES OF UNIVERSITY OF TRANSPORT AND COMMUNICATIONS IN ŽILINA, Mathematical - Physical Series, Volume 10 (1995), 3-10. | MR 1643894

On the lattice property of the plane and some problems of Dirac, Motzkin and Erdős in combinatorical geometry, Combinatorica 3 (3-4) (1983), 281-297. (1983) | MR 0729781

A survey of Sylvester’s problem and its generalizations, Aequa. Math. 40 (1990), 111-135. (1990) | MR 1069788

On a combinatorical problem, Nederl. Acad. Wetensch. 51 (1948), 1277-1279. (1948) | MR 0028289

A short proof that there exist $6n/13$ ordinary points, Discrete and Computational Geometry 9 (1993), no. 2, 187-202. (1993) | MR 1194036

$n$ points in the plane can determine $n^{3\over 2}$ unit circles, Combinatorica 4 (1984), 131. (1984) | MR 0771719 | Zbl 0561.52009

On the number of circles determined by $n$ points, Acta Math. Acad. Sci. Hung. 18 (3-4) (1967), 181-188. (1967) | MR 0213939 | Zbl 0163.14701

Néhány geometriai problémáról, Mat. Lapok 8 (1957), 86-92. (1957) | MR 0098072

On some metric and combinatorical geometric problems, Discrete Math. 60 (1986), 147-153. (1986) | MR 0852104

Contributions to the Sylvester-Gallai-Theory, Doctoral dissertation, University of Copenhagen, 1981. (1981)

Point sets with many unit circles, Discrete Math. 60 (1985), 193-197. (1985) | MR 0852106

Einheitskreise in ebenen Punktmengen, 3.Kolloquium über Diskrete Geometrie, Institut für Mathematik der Universität Salzburg (1985), 163-168. (1985) | Zbl 0572.52020

Problem $24$, Combinatorical Structures and their Applications, New York-London-Paris, Gordon and Breach, 1970. (1970)

On the number of ordinary lines determined by $n$ points, Canad. J. Math. 10 (1958), 210-219. (1958) | MR 0097014

Old and New Unsolved Problems in Plane Geometry and Number Theory, Mathematical Assoc. Amer., Washington, DC, 1991. | MR 1133201

Mathematical Question $11851$, Educational Times 59 (1893), 98. (1893)