Some natural operators on vector fields
Tomáš, Jiří M.
Archivum Mathematicum, Tome 031 (1995), p. 239-249 / Harvested from Czech Digital Mathematics Library

We determine all natural operators transforming vector fields on a manifold $M$ to vector fields on $T^*T^2_1M$, $\operatorname{dim}M \ge 2$, and all natural operators transforming vector fields on $M$ to functions on $T^*TT^2_1M$, $\operatorname{dim}M \ge 3$. We describe some relations between these two kinds of natural operators.

Publié le : 1995-01-01
Classification:  53A55,  58A20
@article{107543,
     author = {Ji\v r\'\i\ M. Tom\'a\v s},
     title = {Some natural operators on vector fields},
     journal = {Archivum Mathematicum},
     volume = {031},
     year = {1995},
     pages = {239-249},
     zbl = {0844.58007},
     mrnumber = {1368261},
     language = {en},
     url = {http://dml.mathdoc.fr/item/107543}
}
Tomáš, Jiří M. Some natural operators on vector fields. Archivum Mathematicum, Tome 031 (1995) pp. 239-249. http://gdmltest.u-ga.fr/item/107543/

The canonical isomorphism between $T^kT^*M$ and $T^*T^kM$, C. R. Acad. Sci. Paris 309 (1989), 1509-1514. (1989) | MR 1033091

Natural liftings of vector fields to tangent bundles of $1$-forms, Mathematica Bohemica 116 (1991), 319-326. (1991) | MR 1126453

Covariant Approach to Natural Transformations of Weil Bundles, Comment. Math. Univ. Carolinae (1986). (1986) | MR 0874666

On Cotagent Bundles of Some Natural Bundles, to appear in Rendiconti del Circolo Matematico di Palermo. | MR 1344006

On the Natural Operators on Vector Fields, Ann. Global Anal. Geometry 6 (1988), 109-117. (1988) | MR 0982760

Natural Operations in Differential Geometry, Springer – Verlag, 1993. (1993) | MR 1202431

Natural Transformations of Second Tangent and Cotangent Bundles, Czechoslovak Math. (1988), 274-279. (1988) | MR 0946296

Some results on second tangent and cotangent spaces, Quaderni dell’Università di Lecce (1978). (1978)