Conjugacy criteria and principal solutions of self-adjoint differential equations
Došlý, Ondřej ; Komenda, Jan
Archivum Mathematicum, Tome 031 (1995), p. 217-238 / Harvested from Czech Digital Mathematics Library

Oscillation properties of the self-adjoint, two term, differential equation \[(-1)^n(p(x)y^{(n)})^{(n)}+q(x)y=0\qquad \mathrm {(*)}\] are investigated. Using the variational method and the concept of the principal system of solutions it is proved that (*) is conjugate on $R=(-\infty ,\infty )$ if there exist an integer $m\in \lbrace 0,1,\dots ,n-1\rbrace $ and $c_0,\dots ,c_m\in R$ such that \[\int _\infty ^0 x^{2(n-m-1)}p^{-1}(x)\,dx=\infty =\int _0^\infty x^{2(n-m-1)}p^{-1}(x)\,dx\] and \[\limsup _{x_1\downarrow -\infty ,x_2\uparrow \infty }\int _{x_1}^{x_2}q(x)(c_0+c_1x+\dots + c_mx^m)^2\,dx\le 0,\quad q(x)\lnot \equiv 0.\] Some extensions of this criterion are suggested.

Publié le : 1995-01-01
Classification:  34C10
@article{107542,
     author = {Ond\v rej Do\v sl\'y and Jan Komenda},
     title = {Conjugacy criteria and principal solutions of self-adjoint differential equations},
     journal = {Archivum Mathematicum},
     volume = {031},
     year = {1995},
     pages = {217-238},
     zbl = {0841.34033},
     mrnumber = {1368260},
     language = {en},
     url = {http://dml.mathdoc.fr/item/107542}
}
Došlý, Ondřej; Komenda, Jan. Conjugacy criteria and principal solutions of self-adjoint differential equations. Archivum Mathematicum, Tome 031 (1995) pp. 217-238. http://gdmltest.u-ga.fr/item/107542/

The effect of variable change on oscillation and disconjugacy criteria with application to spectral theory and asymptotic theory, J. Math. Anal. Appl. 81 (1981), 234-277. (1981) | MR 0618771

, Lectures on the Calculus of Variations, Chicago Press, Chicago 1946. | MR 0017881 | Zbl 1078.52013

, Disconjugacy, Lecture Notes in Math. No 220, Springer Verlag, Berlin-Heidelberg 1971. | MR 0460785 | Zbl 1145.11002

The existence of conjugate points for self-adjoint linear differential equations, Proc. Roy. Soc. Edinburgh 113A (1989), 73-85. (1989) | MR 1025455

Oscillation criteria and discreteness of the spectrum of self-adjoint, even order, differential operators, Proc. Roy. Soc. Edinburgh 119A (1991), 219-231. (1991) | MR 1135970

Kneser-type oscillation criteria for self-adjoint two-term differential equations, Georgian Math. J. 2 (1995), 241-259. (1995) | MR 1334880

, Direct Methods of Qualitative Analysis of Singular Differential Operators, Jerusalem 1965. | Zbl 1159.82319

The singularities of gravity collapse and cosmology, Proc. Roy. Soc. London A314 (1970), 529-548. (1970) | MR 0264959

Existence of conjugate points for second and fourth order differential equations, Proc. Roy. Soc. Edinburgh 89A (1981), 281-91. (1981) | MR 0635764

An oscillation theorem for self- adjoint differential equations, Math. Nachr. 108 (1982), 79-92. (1982) | MR 0695118

Nodal Domains for One- and Two- Dimensional Elliptic Differential Equations, Z. Anal. Anwendungen 7 (1988), 135-139. (1988) | MR 0951346

, Sturmian Theory for Ordinary Differential Equations, Acad. Press, New-York 1980. | MR 0606199 | Zbl 1168.83300

General relativity and conjugate ordinary differential equations, J. Diff. Equations 30 (1978), 165-174. (1978) | MR 0513268 | Zbl 0362.34023