Let $m > 1, s\geq 1$ be fixed positive integers, and let $R$ be a ring with unity $1$ in which for every $x$ in $R$ there exist integers $p = p(x) \geq 0, q = q(x) \geq 0, n = n(x) \geq 0, r = r(x) \geq 0 $ such that either $ x^{p}[x^{n},y]x^{q} = x^{r}[x,y^{m}]y^{s} $ or $ x^{p}[x^{n},y]x^{q} = y^{s}[x,y^{m}]x^{r} $ for all $ y \in R $. In the present paper it is shown that $R$ is commutative if it satisfies the property $Q(m)$ (i.e. for all $x,y \in R, m[x,y] = 0$ implies $[x,y] = 0$).
@article{107540, author = {Mohammad Ashraf}, title = {A commutativity theorem for associative rings}, journal = {Archivum Mathematicum}, volume = {031}, year = {1995}, pages = {201-204}, zbl = {0839.16030}, mrnumber = {1368258}, language = {en}, url = {http://dml.mathdoc.fr/item/107540} }
Ashraf, Mohammad. A commutativity theorem for associative rings. Archivum Mathematicum, Tome 031 (1995) pp. 201-204. http://gdmltest.u-ga.fr/item/107540/
On commutativity of left s-unital rings, Acta Sci. Math. (Szeged) 56 (1992), 51-62. (1992) | MR 1204738 | Zbl 0806.16034
Some commutativity theorems for right s-unital rings, Math. Japonica, 37, No. 3 (1992), 591-600. (1992) | MR 1162474 | Zbl 0767.16010
On commutativity of associative rings with constraints involving a subset, Rad. Mat.5 (1989), 141-149. (1989) | MR 1012730 | Zbl 0683.16025
On certain polynomial identities implying commutativity for rings, (submitted). | Zbl 0988.16518
On the power map and ring commutativity, Canad. Math. Bull. 21 (1978), 399-404. (1978) | MR 0523579 | Zbl 0403.16024
Commutativity of rings with constraints on commutators, Resultate der Math. 8 (1985), 123-131. (1985) | MR 0828934 | Zbl 0606.16023
Two elementary commutativity theorems for rings, Acta Math. Acad.Sci. Hungar. 29 (1977),23-29. (1977) | MR 0444712
Structure of rings, 37 (Amer. Math. Soc. Colloq. Publ. Providence, 1956). (1956) | MR 0081264 | Zbl 0073.02002
A note on commutativity of semi-prime PI- rings, Math. Japonica 27 (1982) 267-268. (1982) | MR 0655230
A commutativity theorem involving certain polynomial constraints, Math. Japonica 36, No. 4 (1991),785-789. (1991) | MR 1120461 | Zbl 0735.16021
On commutativity theorems for PI-rings with unity, Tamkang J. math. 24 No. 1 (1993), 29-36. (1993) | MR 1215242
A commutativity theorem for rings, Math. J. Okayama Univ. 26 (1984), 135-139. (1984) | MR 0779780 | Zbl 0568.16017
A commutativity theorem for rings-II, Osaka J. Math. 22 (1985), 811-814. (1985) | MR 0815449 | Zbl 0575.16017
A commutativity theorem for rings and groups, Canad. Math. Bull. 22 (1979), 419-423. (1979) | MR 0563755 | Zbl 0605.16020
A commutativity theorem for rings involving a subset of the ring, Glasnik Mat. 18 (1983), 231-236. (1983) | MR 0733162 | Zbl 0528.16017
Commutativity theorems for rings and groups with constraints on commutators, Internat. J. Math. & Math. Sci. 7 No. 3(1984), 513-517. (1984) | MR 0771600 | Zbl 0561.16013