Total connections in Lie groupoids
Virsik, Juraj
Archivum Mathematicum, Tome 031 (1995), p. 183-200 / Harvested from Czech Digital Mathematics Library

A total connection of order $r$ in a Lie groupoid $\Phi $ over $M$ is defined as a first order connections in the $(r-1)$-st jet prolongations of $\Phi $. A connection in the groupoid $\Phi $ together with a linear connection on its base, ie. in the groupoid $\Pi (M)$, give rise to a total connection of order $r$, which is called simple. It is shown that this simple connection is curvature-free iff the generating connections are. Also, an $r$-th order total connection in $\Phi $ defines a total reduction of the $r$-th prolongation of $\Phi $ to $\Phi \times \Pi (M)$. It is shown that when $r>2$ then this total reduction of a simple connection is holonomic iff the generating connections are curvature free and the one on $M$ also torsion-free.

Publié le : 1995-01-01
Classification:  53C05,  58A20
@article{107539,
     author = {Juraj Virsik},
     title = {Total connections in Lie groupoids},
     journal = {Archivum Mathematicum},
     volume = {031},
     year = {1995},
     pages = {183-200},
     zbl = {0841.53024},
     mrnumber = {1368257},
     language = {en},
     url = {http://dml.mathdoc.fr/item/107539}
}
Virsik, Juraj. Total connections in Lie groupoids. Archivum Mathematicum, Tome 031 (1995) pp. 183-200. http://gdmltest.u-ga.fr/item/107539/

Extension du calcul des jets aux jets non holonomes, C.R.A.S. Paris 239 (1954), 1762–1764. | MR 0066734 | Zbl 0057.15603

Sur les connexions d’ordre supérieur, Atti V$^\circ $ Cong. Un. Mat. Italiana, Pavia - Torino, 1956, 326–328.

Some higher order operations with connections, Czechoslovak Math. J. 24 (99) (1974), 311–330. | MR 0356114

A generalization of the torsion form, Čas. pěst. mat. 100 (1975), 284–290. | MR 0383287

Torsion-free connections on higher order frame bundles, (to appear).

Natural Operations in Differential Geometry, Springer-Verlag, 1993. | MR 1202431

Connections in first principal prolongations, (to appear).

Du prolongement des espaces fibrés et des structures infinitésimales, Ann. Inst. Fourier, 17, (1967), 157–223. | MR 0221416 | Zbl 0157.28506

A generalized point of view to higher order connections on fibre bundles, Czechoslovak Math. J. 19 (94) (1969), 110–142. | MR 0242187

On the holonomity of higher order connections, Cahiers Top. Géom. Diff. 12 (1971), 197–212. | MR 0305294

Higher order frames and linear connections, Cahiers Top. Géom. Diff. 12 (1971), 333–337. | MR 0307102 | Zbl 0222.53033