We prove that the so-called complete lifting of tangent valued forms from a manifold $M$ to an arbitrary Weil bundle over $M$ preserves the Frölicher-Nijenhuis bracket. We also deduce that the complete lifts of connections are torsion-free in the sense of M. Modugno and the second author.
@article{107533, author = {Antonella Cabras and Ivan Kol\'a\v r}, title = {Prolongation of tangent valued forms to Weil bundles}, journal = {Archivum Mathematicum}, volume = {031}, year = {1995}, pages = {139-145}, zbl = {0843.53021}, mrnumber = {1357981}, language = {en}, url = {http://dml.mathdoc.fr/item/107533} }
Cabras, Antonella; Kolář, Ivan. Prolongation of tangent valued forms to Weil bundles. Archivum Mathematicum, Tome 031 (1995) pp. 139-145. http://gdmltest.u-ga.fr/item/107533/
Complete lifts of tensor fields of type $(1, k)$ to natural bundles, Zeszyty Nauk. UJ, Krak¢w 23 (1982), 43–79. (1982) | MR 0670571 | Zbl 0547.55014
Lifts of some tensor fields and connections to product preserving functors, to appear in Nagoya Math. J. | MR 1295815
Covariant approach to natural transformations of Weil functors, Comment. Math. Univ. Carolinae 27 (1986), 723–729. (1986) | MR 0874666
Natural operations in differential geometry, Springer-Verlag 1993. | MR 1202431
Torsions of connections on some natural bundles, Differential Geometry and Its Applications 2 (1992), 1–16. (1992) | MR 1244453
Graded Lie algebras and connections on a fibred space, Journ. Math. Pures and Appl. 83 (1984), 111–120. (1984) | MR 0776913
Prolongations of connections to bundles of infinitely near points, J. Diff. Geo. 11 (1976), 479–498. (1976) | MR 0445422
Prolongations of connections and sprays with respect to Weil functors, Suppl. Rendiconti Circolo Mat. Palermo, Serie II 14 (1987), 143–155. (1987) | MR 0920852
Théorie des pointes proches sur les variétés différentielles, Colloque de topologie et géométrie différentielle, Strasbourg (1953), 111–117. (1953) | MR 0061455