Parallelisability conditions for differentiable three-webs
Vanžurová, Alena
Archivum Mathematicum, Tome 031 (1995), p. 75-84 / Harvested from Czech Digital Mathematics Library

Our aim is to find conditions under which a 3-web on a smooth $2n$-dimensional manifold is locally equivalent with a web formed by three systems of parallel $n$-planes in ${R}^{2n}$. We will present here a new approach to this “classical” problem using projectors onto the distributions of tangent subspaces to the leaves of foliations forming the web.

Publié le : 1995-01-01
Classification:  53A60
@article{107527,
     author = {Alena Van\v zurov\'a},
     title = {Parallelisability conditions for differentiable three-webs},
     journal = {Archivum Mathematicum},
     volume = {031},
     year = {1995},
     pages = {75-84},
     zbl = {0835.53019},
     mrnumber = {1342378},
     language = {en},
     url = {http://dml.mathdoc.fr/item/107527}
}
Vanžurová, Alena. Parallelisability conditions for differentiable three-webs. Archivum Mathematicum, Tome 031 (1995) pp. 75-84. http://gdmltest.u-ga.fr/item/107527/

Three-webs of multidimensional surfaces, Trudy geom. seminara 2 (1969), 7–31. (Russian) (1969) | MR 0254760

Local differentiable quasigroups and three-webs of multidimensional surfaces, Studies in the Theory of Quasigroups and Loops, Stiintsa, Kishinev, 1973, pp. 3 – 12. (Russian) (1973) | MR 0370391

Eine Invariantentheorie der $3$-Gewebe aus $r$-dimensionalen Mannigfaltigkeiten in $R^{2n}$, Abhandl. Math. Sem. Hamburg Univ. 11 (1936), 333–358. (1936)

Web Geometry, Bull. Am. Math. Soc. 6 (1982), 1–8. (1982) | MR 0634430 | Zbl 0483.53013

Decomposition of smooth functions of two multicodimensional variables, Czech. Math. J. 41(116) (1991), Praha, 342–358. (1991) | MR 1105450

Theory of multicodimensional $(n+1)$-webs, Kluwer Academic Publishers, Dordrecht (Boston, London), 1988. (1988) | MR 0998774 | Zbl 0668.53001

Local differentiable quasigroups and webs, In: O Chein, H.O. Pflugfelder, J.D.H. Smith (eds.) Quasigroups and Loops, 1990. (1990) | MR 1125816 | Zbl 0737.53015

Canonical connections of homogeneous Lie loops and $3$-webs, Mem. Fac. Sci Shimane Univ 19 (1985), 37–55. (1985) | MR 0841222 | Zbl 0588.53014

Projectivity of homogeneous left loops, “Nonassociative algebras and relative topics”, World Scientific, 1991, pp. 77–99. (1991) | MR 1150252 | Zbl 0788.53042

On the canonical connection of a three-web, Publ. Math. Debrecen 32 (1985), 93-99. (1985) | MR 0810595

Invariant tensor fields and the canonical connection of a $3$-web, Aeq. Math. 35 (1988), University of Waterloo, Birkhäuser Verlag, Basel, 31-44. (1988)

Some factorization of matrix functions in several variables, Arch. Math. 28 (1992), Brno, 85–94. (1992) | MR 1201870

Integrability conditions for polynomial structures, Kōdai Math. Sem. Rep. 27 (1976), 42–50. (1976) | MR 0400106

Simultaneous integrability of an almost tangent structure and a distribution, Demonstratio Mathematica XIX No 1 (1986), 359–370. (1986) | MR 0895009

On $(3,2,n)$-webs, Acta Sci. Math. 59 No 3-4, Szeged. | MR 1317181 | Zbl 0828.53017

On three-web manifolds, Report of the Czech Meeting 1993 on Incidence Structures, PU Olomouc, pp. 56–66.

On torsion of a three-web, ( to appear).

Almost-product structures, Differential geometry, Proc. of Symp. in Pure Math. vol. III, pp. 94-100. | MR 0123993 | Zbl 0103.38801

Matematika pro fyziky II, MFF UK, Praha, 1975. (1975)

Introduction à la gomtrie des varits diffrentiables, Dunod, Paris, 1968. (1968)

A good formula for $3$-web curvature tensor, Webs & Quasigroups 1 (1993), 44–50. (1993) | MR 1224965

Differential invariants of webs on $2$-dimensional manifolds, Mat. Zametki 48, 26–37. | MR 1081890