The generalized boundary value problem is a Fredholm mapping of index zero
Rudolf, Boris
Archivum Mathematicum, Tome 031 (1995), p. 55-58 / Harvested from Czech Digital Mathematics Library

In the paper it is proved that each generalized boundary value problem for the n-th order linear differential equation generates a Fredholm mapping of index zero.

Publié le : 1995-01-01
Classification:  34B05,  34B99,  47N20
@article{107524,
     author = {Boris Rudolf},
     title = {The generalized boundary value problem is a Fredholm mapping of index zero},
     journal = {Archivum Mathematicum},
     volume = {031},
     year = {1995},
     pages = {55-58},
     zbl = {0830.34013},
     mrnumber = {1342375},
     language = {en},
     url = {http://dml.mathdoc.fr/item/107524}
}
Rudolf, Boris. The generalized boundary value problem is a Fredholm mapping of index zero. Archivum Mathematicum, Tome 031 (1995) pp. 55-58. http://gdmltest.u-ga.fr/item/107524/

Ordinary differential equations, John Wiley & Sons, New York-London-Sydney, 1964. (1964) | MR 0171038 | Zbl 0125.32102

Fredholm mappings and the generalized boundary value problem, Differential and Integral Equations 8 (1995), 19–40. (1995) | MR 1296108

Functional analysis, Nauka, Moscow, 1980. (Russian) (1980) | MR 0598629 | Zbl 0517.46001