Let $F$ be a disjoint iteration semigroup of $C^n$ diffeomorphisms mapping a real open interval $I\ne \varnothing $ onto $I$. It is proved that if $F$ has a dense orbit possesing a subset of the second category with the Baire property, then $F=\lbrace f_t\:\,f_t(x)=f^{-1}(f(x)+t)\text{ for every }x\in I, t\in R\rbrace $ for some $C^n$ diffeomorphism $f$ of $I$ onto the set of all reals $R$. The paper generalizes some results of J.A.Baker and G.Blanton [3].
@article{107522, author = {Janusz Brzd\k ek}, title = {On some iteration semigroups}, journal = {Archivum Mathematicum}, volume = {031}, year = {1995}, pages = {37-42}, zbl = {0834.39011}, mrnumber = {1342373}, language = {en}, url = {http://dml.mathdoc.fr/item/107522} }
Brzdęk, Janusz. On some iteration semigroups. Archivum Mathematicum, Tome 031 (1995) pp. 37-42. http://gdmltest.u-ga.fr/item/107522/
Funktionskomposition, Iterationsgruppen und Gewebe, Arch. Math. (Basel) 17 (1966), 469-475. (1966) | MR 0203624
A note on iteration groups, Aequationes Math. 28 (1985), 129-131. (1985) | MR 0781217 | Zbl 0582.26001
Iteration groups generated by $C^n$ functions, Arch. Math. (Brno) 18 (1982), 121-127. (1982) | MR 0682099
Smoothness in disjoint groups of real functions under composition, C.R.Math. Rep. Acad. Sci. Canada 5 (1983), 169-172. (1983) | MR 0713677 | Zbl 0518.26003
Smoothness in disjoint groups of real functions under composition, Aequationes Math. 35 (1988), 1-16. (1988) | MR 0939617 | Zbl 0702.26010
Partially ordered algebraic systems, Pergamon Press, Oxford-London-New York-Paris, 1963. (1963) | MR 0171864 | Zbl 0137.02001
Therems of Berstein-Doetsch, Piccard and Mehdi and semilinear topology, Arch. Math. (Basel) 52 (1989), 595-602. (1989) | MR 1007635
Simultaneous solutions of a system of Abel equations and differential equations with several deviations, Czechoslovak Math. J. 32 (107) (1982), 488-494. (1982) | MR 0669790 | Zbl 0524.34070
Measure and Category, Graduate Texts in Mathematics 2, Springer-Verlag, New York-Heidelberg-Berlin, 1971. (1971) | MR 0584443 | Zbl 0217.09201