Oscillation theorems for neutral differential equations with the quasi-derivatives
Růžičková, Miroslava ; Špániková, E.
Archivum Mathematicum, Tome 030 (1994), p. 293-300 / Harvested from Czech Digital Mathematics Library

The authors study the n-th order nonlinear neutral differential equations with the quasi – derivatives $L_n[x(t)+(-1)^r P(t) x(g(t))]+\delta Q(t) f(x(h(t))) = 0,$ where $\ n \ge 2,\ r \in \lbrace 1,2\rbrace ,\ $ and $ \delta = \pm 1.$ There are given sufficient conditions for solutions to be either oscillatory or they converge to zero.

Publié le : 1994-01-01
Classification:  34C10,  34K15,  34K25,  34K40,  34K99
@article{107516,
     author = {Miroslava R\r u\v zi\v ckov\'a and E. \v Sp\'anikov\'a},
     title = {Oscillation theorems for neutral differential equations with the quasi-derivatives},
     journal = {Archivum Mathematicum},
     volume = {030},
     year = {1994},
     pages = {293-300},
     zbl = {0819.34046},
     mrnumber = {1322574},
     language = {en},
     url = {http://dml.mathdoc.fr/item/107516}
}
Růžičková, Miroslava; Špániková, E. Oscillation theorems for neutral differential equations with the quasi-derivatives. Archivum Mathematicum, Tome 030 (1994) pp. 293-300. http://gdmltest.u-ga.fr/item/107516/

On the oscillation of an $n$th-order nonlinear neutral delay differential equation, J. Comp. Appl. Math. 41 (1992), 35-40. (1992) | MR 1181706

Oscillation properties of first order nonlinear functional differential equations of neutral type, Diff. and Int. Equat. (1991), 425-436. (1991) | MR 1081192

Oscillatory properties of functional differential systems of neutral type, Czech. Math. J. 43 (1993), 649-662. (1993) | MR 1258427

Nonoscillatory solutions of differential equations with deviating argument, Czech. Math. J. 36 (111) (1986), 93-107. (1986) | MR 0822871

Oscillation of bounded solutions of neutral differential equations, Appl. Math. Lett. 2 (1993), 43-46. (1993) | MR 1347773