On divisibility of the class number of real octic fields of a prime conductor $p=n\sp 4+16$ by $p$
Jakubec, Stanislav
Archivum Mathematicum, Tome 030 (1994), p. 263-270 / Harvested from Czech Digital Mathematics Library

The aim of this paper is to prove the following Theorem Theorem Let $K$ be an octic subfield of the field $Q(\zeta _p+\zeta _p^{-1})$ and let $p=n^4+16$ be prime. Then $p$ divides $h_K$ if and only if $p$ divides $B_j$ for some $j=\frac{p-1}{8}$, $3\frac{p-1}{8}$, $5\frac{p-1}{8}$, $7\frac{p-1}{8}$.

Publié le : 1994-01-01
Classification:  11B68,  11R18,  11R20,  11R29
@article{107512,
     author = {Stanislav Jakubec},
     title = {On divisibility of the class number of real octic fields of a prime conductor $p=n\sp 4+16$ by $p$},
     journal = {Archivum Mathematicum},
     volume = {030},
     year = {1994},
     pages = {263-270},
     zbl = {0818.11042},
     mrnumber = {1322570},
     language = {en},
     url = {http://dml.mathdoc.fr/item/107512}
}
Jakubec, Stanislav. On divisibility of the class number of real octic fields of a prime conductor $p=n\sp 4+16$ by $p$. Archivum Mathematicum, Tome 030 (1994) pp. 263-270. http://gdmltest.u-ga.fr/item/107512/

Irregular primes to one million, Math. Comp. 59 (1992), no. 200, 717-722. (1992) | MR 1134717

Note on a polynomial of Emma Lehmer, Math. Comp. 56 (1991), no. 44, 795-800. (1991) | MR 1068821 | Zbl 0732.11056

Sur les corps cubiques cycliques dont l’anneau des entiers est monogene, Ann. Sci. Univ. Besancon Math.(3), no. 6, 1-26. | MR 0352043 | Zbl 0287.12010

Table numerique du nombre de classes et de unites des extensions cycliques reelles de degre 4 de $Q$, Publ. Math. Besancon, fasc. 2 (1977/1978), 1-26, 1-53. (1977/1978) | MR 0526779

Familles d’unites dans les extensions cycliques reelles de degre 6 de $Q$, Publ. Math. Besancon (1984/1985-1985/1986). (1984/1985-1985/1986) | MR 0898667

Special units in real cyclic sextic fields, Math.Comp. 48 (1987), 341-355. (1987) | MR 0866107 | Zbl 0617.12006

The congruence for Gauss’s period, Journal of Number Theory 48 (1994), 36-45. (1994) | MR 1284872

On the Vandiver’s conjecture, Abh. Math. Sem. Univ. Hamburg 64 (1994), 105-124. (1994) | MR 1292720

Gaussian periods and units in certain cyclic fields, Proceedings of AMS 115, 961 - 968. | MR 1093600 | Zbl 0760.11032

Unites d’une famille de corps cycliques reeles de degre 6 lies a la coube modulaire $X_1(13)$, J. Number Theory 31 (1989), 54-63. (1989) | MR 0978099

Connection between Gaussian periods and cyclic units, Math. Comp. 50 (1988), 535-541. (1988) | MR 0929551 | Zbl 0652.12004

A class number congruence for cyclotomic fields and their subfields, Acta Arith. 23 (1973), 107-116. (1973) | MR 0332720

Nombre de classes d’une extension cyclique reelle de $\mathbb{Q}$, de degre 4 ou 6 et de conducteur premier, Math. Nachr. 102 (1981), 45-52. (1981) | MR 0642140

Majoration du nombre de classes d’un corps cubique cyclique de conducteur premier, J.Math. Soc. Japan 33 (1981), 701-706. (1981) | MR 0630633

Quintic polynomials and real cyclotomic fields with large class numbers, Math. Comp. 50 (1988), 543-556. (1988) | MR 0929552

The simplest cubic fields, Math. Comp. 28 (1974), 1137-1152. (1974) | MR 0352049 | Zbl 0307.12005

Unit groups and class numbers of real cyclic fields, TAMS 326 (1991), 179-209. (1991) | MR 1031243

Introduction to Cyclotomic Fields, Springer-Verlag 83. | MR 1421575 | Zbl 0966.11047