We consider maximal monotone differential inclusions with memory. We establish the existence of extremal strong and then we show that they are dense in the solution set of the original equation. As an application, we derive a “bang-bang” principle for nonlinear control systems monitored by maximal monotone differential equations.
@article{107510, author = {Nikolaos S. Papageorgiou}, title = {A strong relaxation theorem for maximal monotone differential inclusions with memory}, journal = {Archivum Mathematicum}, volume = {030}, year = {1994}, pages = {227-235}, zbl = {0817.34010}, mrnumber = {1322568}, language = {en}, url = {http://dml.mathdoc.fr/item/107510} }
Papageorgiou, Nikolaos S. A strong relaxation theorem for maximal monotone differential inclusions with memory. Archivum Mathematicum, Tome 030 (1994) pp. 227-235. http://gdmltest.u-ga.fr/item/107510/
Differential Inclusions, Springer, Berlin, 1984. (1984) | MR 0755330
Compacité de l’ opérateur $f \rightarrow u$ solution d’une equation nonlineaire $(du/dt)+ Au \ni f^{\prime \prime }$, C.R. Acad. Sci. Paris 286 (1978), 1113 - 1116. (1978) | MR 0493554
Points Extremaux, Multi-applications et Fonctionelles Intégrales, Thèse du 3ème cycle, Université de Grenoble (1975), France.
Extensions and selections of maps with decomposable values, Studia Math. 90 (1988), 69-85. (1988) | MR 0947921
Operateurs Maximaux Monotones, North Holland, Amsterdam, 1973. (1973) | Zbl 0252.47055
Linear Operators I, Willey, New York, 1958. (1958)
Differential equations with discontinuous right-hand side for planning procedures, J. Economic Theory 4 (1972), 545-551. (1972) | MR 0449534
Theory of Correspondences, Willey, New York, 1984. (1984) | MR 0752692
Evolution problem associated with a moving convex set in a Hilbert space, J. Diff. Equations 26 (1977), 347-374. (1977) | MR 0508661
Convergence theorems for Banach space valued integrable multifunctions, Inter. J. Math. and Math. Sci. 10 (1987), 433-442. (1987) | MR 0896595 | Zbl 0619.28009
On measurable multifunctions with applications to random multivalued equations, Math. Japonica 32 (1987), 437-464. (1987) | MR 0914749 | Zbl 0634.28005
Differential inclusions with state constraints, Proc. Edinburgh Math. Soc. 32 (1988), 81-97. (1988) | MR 0981995
Maximal monotone differential inclusions with memory, Proc. Indian Acad. Sci. 102 (1992), 59-72. (1992) | MR 1163975 | Zbl 0758.34012
Convergence theorems for set-valued conditional expectations, Comm. Math. Univ. Carol. 34 (1) (1993), in press. (1993) | MR 1240208 | Zbl 0788.60021
Extreme continuous selectors for multivalued maps and “bang-bang" principle for evolution inclusion, Soviet Math. Doklady 317 (1991), 481-485. (1991) | MR 1121349
Survey of measurable selection theorems, SIAM J. Control and Optim. 15 (1977), 859-903. (1977) | MR 0486391 | Zbl 0407.28006