Embedding of Hilbert manifolds with smooth boundary into semispaces of Hilbert spaces
Margalef-Roig, J. ; Outerelo-Domínguez, Enrique
Archivum Mathematicum, Tome 030 (1994), p. 145-164 / Harvested from Czech Digital Mathematics Library

In this paper we prove the existence of a closed neat embedding of a Hausdorff paracompact Hilbert manifold with smooth boundary into $H \times [0, + \infty)$, where $H$ is a Hilbert space, such that the normal space in each point of a certain neighbourhood of the boundary is contained in $H \times \{ 0 \}$. Then, we give a neccesary and sufficient condition that a Hausdorff paracompact topological space could admit a differentiable structure of class $\infty$ with smooth boundary.

Publié le : 1994-01-01
Classification:  57R40,  58B10,  58C25
@article{107504,
     author = {J. Margalef-Roig and Enrique Outerelo-Dom\'\i nguez},
     title = {Embedding of Hilbert manifolds with smooth boundary into semispaces of Hilbert spaces},
     journal = {Archivum Mathematicum},
     volume = {030},
     year = {1994},
     pages = {145-164},
     zbl = {0849.57026},
     mrnumber = {1308351},
     language = {en},
     url = {http://dml.mathdoc.fr/item/107504}
}
Margalef-Roig, J.; Outerelo-Domínguez, Enrique. Embedding of Hilbert manifolds with smooth boundary into semispaces of Hilbert spaces. Archivum Mathematicum, Tome 030 (1994) pp. 145-164. http://gdmltest.u-ga.fr/item/107504/

R. Abraham Lectures of Smale Differential Topology, Columbia University, New York, 1962. (1962)

S. Armas-Gómez J. Margalef-Roig E. Outerelo-Domínguez E. Padrón-Fernández Embedding of an Urysohn differentiable manifold with corners in a real Banach space, Winter School of Geometry and Physics held in SRNI (January, 1991, Czechoslovak). (1991)

H. Cartan Sur les Rétractions d’une varieté, C.R. Acad. Sc. Paris, A. 303, Serie I, n. 14, 1986, p. 715. (1986) | MR 0870703 | Zbl 0609.32021

J. Eells K.D. Elworthy Open embeddings of certain Banach manifolds, Ann. of Math. 91, 1970, 465–485. (1970) | MR 0263120

R. Godement Théorie des faisceaux, Hermann, Paris, 1958. (1958) | MR 0102797 | Zbl 0080.16201

J. Margalef-Roig E. Outerelo-Domínguez Topología diferencial, C.S.I.C., Madrid, 1988. (1988) | MR 0939168

J. Margalef-Roig E. Outerelo-Domínguez On Retraction of Manifolds with corners, (to appear). | MR 1303795

J.H. Mcalpin Infinite dimensional manifolds and Morse theory, Ph.D. Thesis, Columbia University, New York, 1965. (1965)

R.E. Stong Notes on Cobordism Theory, Princeton University Press, 1968. (1968) | MR 0248858 | Zbl 0181.26604