Special solutions of linear difference equations with infinite delay
Medveď, Milan
Archivum Mathematicum, Tome 030 (1994), p. 139-144 / Harvested from Czech Digital Mathematics Library

For the difference equation $(\epsilon )\,\, x_{n+1} = Ax_n + \epsilon \sum _{k = -\infty }^n R_{n-k}x_k$,where $x_n \in Y,\, Y$  is a Banach space, $\epsilon $ is a parameter and  $A$  is a linear, bounded operator. A sufficient condition for the existence of a unique special solution  $y = \lbrace y_n\rbrace _{n=-\infty }^{\infty }$  passing through the point  $x_0 \in Y$  is proved. This special solution converges to the solution of the equation (0) as  $\epsilon \rightarrow 0$.

Publié le : 1994-01-01
Classification:  34K30,  39A10,  39A70,  47B39
@article{107502,
     author = {Milan Medve\v d},
     title = {Special solutions of linear difference equations with infinite delay},
     journal = {Archivum Mathematicum},
     volume = {030},
     year = {1994},
     pages = {139-144},
     zbl = {0819.39001},
     mrnumber = {1292565},
     language = {en},
     url = {http://dml.mathdoc.fr/item/107502}
}
Medveď, Milan. Special solutions of linear difference equations with infinite delay. Archivum Mathematicum, Tome 030 (1994) pp. 139-144. http://gdmltest.u-ga.fr/item/107502/

Two-sided solutions of linear integrodifferential equations of Volterra type with delay, Časopis pro pěst. matem. 115 , 3 (1990), 264–272. (1990) | MR 1071057

On the existence of two-sided solutions of linear integrodifferential equations of Volterra type with delay, Čaopis pro pěst. matem. 111, 2 (1986), 26–33. (Russian) (1986) | MR 0833154