For the difference equation $(\epsilon )\,\, x_{n+1} = Ax_n + \epsilon \sum _{k = -\infty }^n R_{n-k}x_k$,where $x_n \in Y,\, Y$ is a Banach space, $\epsilon $ is a parameter and $A$ is a linear, bounded operator. A sufficient condition for the existence of a unique special solution $y = \lbrace y_n\rbrace _{n=-\infty }^{\infty }$ passing through the point $x_0 \in Y$ is proved. This special solution converges to the solution of the equation (0) as $\epsilon \rightarrow 0$.
@article{107502, author = {Milan Medve\v d}, title = {Special solutions of linear difference equations with infinite delay}, journal = {Archivum Mathematicum}, volume = {030}, year = {1994}, pages = {139-144}, zbl = {0819.39001}, mrnumber = {1292565}, language = {en}, url = {http://dml.mathdoc.fr/item/107502} }
Medveď, Milan. Special solutions of linear difference equations with infinite delay. Archivum Mathematicum, Tome 030 (1994) pp. 139-144. http://gdmltest.u-ga.fr/item/107502/
Two-sided solutions of linear integrodifferential equations of Volterra type with delay, Časopis pro pěst. matem. 115 , 3 (1990), 264–272. (1990) | MR 1071057
On the existence of two-sided solutions of linear integrodifferential equations of Volterra type with delay, Čaopis pro pěst. matem. 111, 2 (1986), 26–33. (Russian) (1986) | MR 0833154