Curvature tensors in dimension four which do not belong to any curvature homogeneous space
Kowalski, Oldřich ; Prüfer, Friedbert
Archivum Mathematicum, Tome 030 (1994), p. 45-57 / Harvested from Czech Digital Mathematics Library

A six-parameter family is constructed of (algebraic) Riemannian curvature tensors in dimension four which do not belong to any curvature homogeneous space. Also a general method is given for a possible extension of this result.

Publié le : 1994-01-01
Classification:  53C20,  53C21,  53C30
@article{107494,
     author = {Old\v rich Kowalski and Friedbert Pr\"ufer},
     title = {Curvature tensors in dimension four which do not belong to any curvature homogeneous space},
     journal = {Archivum Mathematicum},
     volume = {030},
     year = {1994},
     pages = {45-57},
     zbl = {0813.53027},
     mrnumber = {1282112},
     language = {en},
     url = {http://dml.mathdoc.fr/item/107494}
}
Kowalski, Oldřich; Prüfer, Friedbert. Curvature tensors in dimension four which do not belong to any curvature homogeneous space. Archivum Mathematicum, Tome 030 (1994) pp. 45-57. http://gdmltest.u-ga.fr/item/107494/

Chern S.S. On the Curvature and Characteristic Classes of a Riemannian manifold, Abh. Math. Sem. Univ. Hamburg 20 (1955), 117-126. (1955) | MR 0075647

Kowalski O. An explicit classification of 3-dimensional Riemannian spaces satisfying $R(X,Y)\cdot R = 0$, Preprint, 1991. (1991) | MR 1408298

Kowalski O. A classification of Riemannian 3-manifolds with constant principal Ricci curvatures $\rho _1 = \rho _2 \ne \rho _3$, To appear in Nagoya Math. J. 132 (1993). (1993) | MR 1253692

Kowalski O. Nonhomogeneous Riemannian 3-manifolds with distinct constant Ricci eigenvalues, Comment. Math. Univ. Carolinae, 34, 3 (1993), 451-457. (1993) | MR 1243077 | Zbl 0789.53024

Klinger R. A Basis that Reduces to Zero as many Curvature Components as Possible, Abh. Math. Sem. Univ. Hamburg 61 (1991), 243-248. (1991) | MR 1138290 | Zbl 0753.53012

Kobayashi S.; Nomizu K. Foundations of Differential geometry I, Interscience Publishers, New York 1963. (1963) | MR 0152974 | Zbl 0119.37502

Kowalski O.; Prüfer F. On Riemannian 3-manifolds with distinct constant Ricci eigenvalues, Preprint, 1993. (1993) | MR 1289828

Kowalski O.; Tricerri F.; Vanhecke L. New examples of non-homogeneous Riemannian manifolds whose curvature tensor is that of a Riemannian symmetric space, C. R. Acad. Sci. Paris, Sér. I, 311 (1990), 355-360 (1990) | MR 1071643 | Zbl 0713.53028

Kowalski O.; Tricerri F.; Vanhecke L. Curvature homogeneous Riemannian manifolds, J. Math. Pures Appl. 71 (1992), 471 - 501. (1992) | MR 1193605 | Zbl 0836.53029

Kowalski O.; Tricerri F.; Vanhecke L. Curvature homogeneous spaces with a solvable Lie group as a homogeneous model, J. Math. Soc. Japan, 44 (1992), 461-484. (1992) | MR 1167378

Kowalski O.; Vanhecke L. Ball-Homogeneous and Disk-Homogeneous Riemannian manifolds, Math. Z. 180 (1982), 429-444. (1982) | MR 0666999 | Zbl 0476.53023

Nicolodi L.; Tricerri F. On two Theorems of I.M. Singer about Homogeneous Spaces, Ann. Global Anal. Geom. 8 (1990), 193-209. (1990) | MR 1088511 | Zbl 0676.53058

Milnor J. Curvatures of left invariant metrics on Lie groups, Adv. in Math. 21 (1976), 293-329. (1976) | MR 0425012 | Zbl 0341.53030

Sekigawa K. On some 3-dimensional Riemannian manifolds, Hokkaido Math. J. 2 (1973), 259-270. (1973) | MR 0353204 | Zbl 0266.53034

Singer I.M. Infinitesimally homogeneous spaces, Comm. Pure Appl. Math. 13 (1960), 685-697. (1960) | MR 0131248 | Zbl 0171.42503

Singer I.M.; Thorpe J.A. The curvature of 4-dimensional Einstein spaces, In: Global Analysis (Papers in honor of K. Kodaira, pp. 355-366) Princeton, New Jersey, Princeton University Press 1969. (1969) | MR 0256303 | Zbl 0199.25401

Spiro A.; Tricerri F. 3-dimensional Riemannian metrics with prescribed Ricci principal curvatures, Preprint, 1993. (1993) | MR 1327884

Tsukada T. Curvature homogeneous hypersurfaces immersed in a real space form, Tôhoku Math. J. 40 (1988), 221-244. (1988) | MR 0943821 | Zbl 0651.53037

Tricerri F.; Vanhecke L. Curvature tensors on almost Hermitian manifolds, Trans. Amer. Math. Soc. 267 (1981), 365-398. (1981) | MR 0626479 | Zbl 0484.53014

Yamato K. A characterization of locally homogeneous Riemannian manifolds of dimension three, Nagoya Math. J. 123 (1991), 77-90. (1991) | MR 1126183