Commutators of flows and fields
Mauhart, Markus ; Michor, Peter W.
Archivum Mathematicum, Tome 028 (1992), p. 229-236 / Harvested from Czech Digital Mathematics Library

The well known formula $[X,Y]=\tfrac{1}{2}\tfrac{\partial ^2}{\partial t^2}|_0 (^Y_{-t}ø^X_{-t}ø^Y_tø^X_t)$ for vector fields $X$, $Y$ is generalized to arbitrary bracket expressions and arbitrary curves of local diffeomorphisms.

Publié le : 1992-01-01
Classification:  37C10,  58F25
@article{107455,
     author = {Markus Mauhart and Peter W. Michor},
     title = {Commutators of flows and fields},
     journal = {Archivum Mathematicum},
     volume = {028},
     year = {1992},
     pages = {229-236},
     zbl = {0784.58051},
     mrnumber = {1222291},
     language = {en},
     url = {http://dml.mathdoc.fr/item/107455}
}
Mauhart, Markus; Michor, Peter W. Commutators of flows and fields. Archivum Mathematicum, Tome 028 (1992) pp. 229-236. http://gdmltest.u-ga.fr/item/107455/

Linear spaces and differentiation theory, Pure and Applied Mathematics, J. Wiley, Chichester, 1988. (1988) | MR 0961256

Natural operators in differential geometry, to appear, Springer-Verlag. | MR 1202431

A convenient setting for real analytic mappings, Acta Mathematica 165 (1990), 105–159. (1990) | MR 1064579

Aspects of the theory of infinite dimensional manifolds, Differential Geometry and Applications 1(1) (1991). (1991) | MR 1244442

Foundations of Global Analysis, A book in the early stages of preparation.

A convenient setting for holomorphy, Cahiers Top. Géo. Diff. 26 (1985), 273–309. (1985) | MR 0796352

Iterierte Lie Ableitungen und Integrabilität, Diplomarbeit, Universität Wien, 1990. (1990)

Natural vector bundles and natural differential operators, American J. of Math. 100 (1978), 775–828. (1978) | MR 0509074