The well known formula $[X,Y]=\tfrac{1}{2}\tfrac{\partial ^2}{\partial t^2}|_0 (^Y_{-t}ø^X_{-t}ø^Y_tø^X_t)$ for vector fields $X$, $Y$ is generalized to arbitrary bracket expressions and arbitrary curves of local diffeomorphisms.
@article{107455, author = {Markus Mauhart and Peter W. Michor}, title = {Commutators of flows and fields}, journal = {Archivum Mathematicum}, volume = {028}, year = {1992}, pages = {229-236}, zbl = {0784.58051}, mrnumber = {1222291}, language = {en}, url = {http://dml.mathdoc.fr/item/107455} }
Mauhart, Markus; Michor, Peter W. Commutators of flows and fields. Archivum Mathematicum, Tome 028 (1992) pp. 229-236. http://gdmltest.u-ga.fr/item/107455/
Linear spaces and differentiation theory, Pure and Applied Mathematics, J. Wiley, Chichester, 1988. (1988) | MR 0961256
Natural operators in differential geometry, to appear, Springer-Verlag. | MR 1202431
A convenient setting for real analytic mappings, Acta Mathematica 165 (1990), 105–159. (1990) | MR 1064579
Aspects of the theory of infinite dimensional manifolds, Differential Geometry and Applications 1(1) (1991). (1991) | MR 1244442
Foundations of Global Analysis, A book in the early stages of preparation.
A convenient setting for holomorphy, Cahiers Top. Géo. Diff. 26 (1985), 273–309. (1985) | MR 0796352
Iterierte Lie Ableitungen und Integrabilität, Diplomarbeit, Universität Wien, 1990. (1990)
Natural vector bundles and natural differential operators, American J. of Math. 100 (1978), 775–828. (1978) | MR 0509074