We give a characterization of the globally Lipschitzian composition operators acting in the space $BV_p^2[a,b]$
@article{107449, author = {Janusz Matkowski and Nelson Merentes}, title = {Characterization of globally Lipschitzian composition operators in the Banach space ${\rm BV}\sb p\sp 2[a,b]$}, journal = {Archivum Mathematicum}, volume = {028}, year = {1992}, pages = {181-186}, zbl = {0785.47033}, mrnumber = {1222285}, language = {en}, url = {http://dml.mathdoc.fr/item/107449} }
Matkowski, Janusz; Merentes, Nelson. Characterization of globally Lipschitzian composition operators in the Banach space ${\rm BV}\sb p\sp 2[a,b]$. Archivum Mathematicum, Tome 028 (1992) pp. 181-186. http://gdmltest.u-ga.fr/item/107449/
On globally Lipschitzian operator in the space $\text{Lip} C^r[a,b]$, Fasculi Math. 21 (1990), 79-85. (1990) | MR 1115522
On characterization of Lipschitzian operators of substitution in the class of Hölder’s function, Zeszyty Naukowe Politechniki Lodzkiej, Matematyka. Z. 17 (1984), 81-85. (1984) | MR 0790842
Functional Equations and Nemyskij operators, Funkcialaj Ekvacioj 25 (1982), 127-132. (1982) | MR 0694906
Form of Lipschitzian operator of substitution in Banach space of differentiable functios, Zeszyty Naukowe Politechniki-Lódzkiej, Matematyka. Z. 17 (1984), 5-10. (1984) | MR 0790835
On a characterization of Lipschitzian operators of substitution in the space $BV[a,b]$, Math. Nach. 117 (1984), 155-159. (1984) | MR 0755299
On a characterization of Lipschitzian operators of substitution in the space of bounded Riesz $\varphi $-variation, Ann. Univ. Sci. Budapest. Sect. Math. (to appear). | MR 1161510 | Zbl 0808.47050
On the concept of bounded $(p,2)$-variation of a function, Rend. Sem. Mat. Univ. Padova (submitted).
Untersuchungen über systeme intergrierbarer functionen, Mathematische Annalen 69 (1910), 1449-1497. (1910)
Convex functions, Academic Press, New York and London, 1973. | MR 0442824
Sur la convergence des formules d’interpolation entre ordinées equidistances, Bull. Acad. Sci. Belg. (1908), 319-410. (1908)