All natural affinors on the $r$-th order cotangent bundle $T^{r*}M$ are determined. Basic affinors of this type are the identity affinor id of $TT^{r*}M$ and the $s$-th power affinors $Q^s_M : TT^{r*}M \rightarrow VT^{r*}M$ with $s=1, \dots , r$ defined by the $s$-th power transformations $A^{r,r}_s$ of $T^{r*}M$. An arbitrary natural affinor is a linear combination of the basic ones.
@article{107448, author = {Jan Kurek}, title = {Natural affinors on higher order cotangent bundle}, journal = {Archivum Mathematicum}, volume = {028}, year = {1992}, pages = {175-180}, zbl = {0782.58007}, mrnumber = {1222284}, language = {en}, url = {http://dml.mathdoc.fr/item/107448} }
Kurek, Jan. Natural affinors on higher order cotangent bundle. Archivum Mathematicum, Tome 028 (1992) pp. 175-180. http://gdmltest.u-ga.fr/item/107448/
Torsions of connections on some natural bundles, Diff. Geom. and Appl. 2 (1992), 1-16. (1992) | MR 1244453
Natural Operations in Differential Geometry, (to appear). (to appear) | MR 1202431
Natural transformations of higher order cotangent bundles functor, to appear in Ann. Polon. Math.. | MR 1215758