The structure tensor and first order natural differential operators
Kobak, Piotr
Archivum Mathematicum, Tome 028 (1992), p. 121-138 / Harvested from Czech Digital Mathematics Library

The notion of a structure tensor of section of first order natural bundles with homogeneous standard fibre is introduced. Properties of the structure tensor operator are studied. The universal factorization property of the structure tensor operator is proved and used for classification of first order $*$-natural differential operators $\underline{D}:\underline{T\times T} \rightarrow \underline{T}$ for $n\ge 3$.

Publié le : 1992-01-01
Classification:  53A55,  53C10,  58A20
@article{107444,
     author = {Piotr Kobak},
     title = {The structure tensor and first order natural differential operators},
     journal = {Archivum Mathematicum},
     volume = {028},
     year = {1992},
     pages = {121-138},
     zbl = {0785.53014},
     mrnumber = {1222280},
     language = {en},
     url = {http://dml.mathdoc.fr/item/107444}
}
Kobak, Piotr. The structure tensor and first order natural differential operators. Archivum Mathematicum, Tome 028 (1992) pp. 121-138. http://gdmltest.u-ga.fr/item/107444/

Sur la gèometrie differèntiele des $G$-structures, Ann. Inst. Fourier 10 (1960). (1960) | MR 0126800

Natural tensors on Riemannian manifolds, J. Diff. Geom. 10 (1975), 631 -645. (1975) | MR 0415531 | Zbl 0321.53039

Theory of $G$-structures, Publications of the Study Group of Geometry 1 (1972), Okayama. (1972) | MR 0348664 | Zbl 0235.53035

Liftings of functions and vector fields to natural bundles, Diss. Math. CCXII (1983), Institute of Mathematics, Warszawa. (1983) | MR 0697471

All natural concomitants of vector valued differential forms, Proc. of the Winter School of Geometry and Physics (1987), Srní. (1987) | MR 0946715

Natural Lagrangian structures, Diff. Geom. 12 (1984), Banach center Publications, PWN - Polish Scientific Publisher, Warszaw, 185-210. (1984) | MR 0961080 | Zbl 0572.58007

On the uniqueness of some differential invariants: $d,[,], \triangledown $, Cz. Math. J. 34(109) (1984), 588-597. (1984) | MR 0764440

Fibre bundles associated with fields of geometric objects and a structure tensor, preprint, International Centre For Theoretical Physics, Miramare, Trieste, 1987.

On the reduction Theorems, Ann. Polon. Math. XXVI (1972), 125-133. (1972) | MR 0307078

Systems of partial differential equations and Lie pseudogroups, Gordon and Breach, 1978. (1978) | MR 0517402 | Zbl 0418.35028

Natural vector bundle and natural differential operators, Am. J. Math. 100 (1978), 775-828. (1978) | MR 0509074

Foundations of differential geometry of natural bundles, Univ. of Caracas, 1984. (1984)