Transformations of linear Hamiltonian systems preserving oscillatory behaviour
Došlý, Ondřej
Archivum Mathematicum, Tome 027 (1991), p. 211-219 / Harvested from Czech Digital Mathematics Library
Publié le : 1991-01-01
Classification:  34C10
@article{107424,
     author = {Ond\v rej Do\v sl\'y},
     title = {Transformations of linear Hamiltonian systems preserving oscillatory behaviour},
     journal = {Archivum Mathematicum},
     volume = {027},
     year = {1991},
     pages = {211-219},
     zbl = {0764.34026},
     mrnumber = {1189218},
     language = {en},
     url = {http://dml.mathdoc.fr/item/107424}
}
Došlý, Ondřej. Transformations of linear Hamiltonian systems preserving oscillatory behaviour. Archivum Mathematicum, Tome 027 (1991) pp. 211-219. http://gdmltest.u-ga.fr/item/107424/

Ahlbrandt C.D. Equivalent boundary value problems for self-adjoint differential systems, J. Diff Equations, vol 9, 1971, 420-435. (1971) | MR 0284636 | Zbl 0218.34020

Atkinson F.V Discrete and Continuous Boundary Value Problems, 1964, Acad. Press., New York. | MR 0176141

Barrett J.H Oscillation theory of ordinary differential equations, Adv. in Math., vol З, 1969, 415-509. (1969) | MR 0257462

Coppel W.A. Disconjugacy, Lecture Notes in Math., 1971, Berlin - New York - Heidelbeгg. (1971) | MR 0460785 | Zbl 0224.34003

Došlá Z.; Zezra P. Singular quadratic functionals with free endpoints, in preparation.

Došlý O. On transformation of self-adjoint differential systems and their reciprocals, Annal. Pol. Math. 50, 1990, 223-234. (1990)

Došlý O. On some properties of trigonometric matrices, Čas. pěst. mat., vol 112, 1987. (1987) | MR 0897644 | Zbl 0642.34024

Hartman P. Self-adjoint, non-oscillatory systems of ordinary, second order linear differential equations, Duke J. Math., vol 24, 1956, 25-35. (1956) | MR 0082591

Jakubovič V.A. Oscillatory properties of solutions of canonical equations, Mat. Sb. (N. S.), vol 56, 1962, 3-42. (Russian) (1962) | MR 0138863

Rasmussen C.H. Oscillation and asymptotic behaviour of systems of ordinary linear differential equations, T. A. M. S., vol 256, 1979, 1-48. (1979)

Reid W.T. Sturmian Theory for Ordinary Differential Equations, Springer-Verlag, New York - Berlin - Heidelberg, 1980. (1980) | MR 0606199 | Zbl 0459.34001

Staněk S.; Vosmanský J. Transformation of linear second order ordinary differential equations, Arch. Math., vol 22, 1986, 55-60. (1986) | MR 0868119