Edge theorem for finite partially ordered sets
Tasković, Milan R.
Archivum Mathematicum, Tome 026 (1990), p. 1-5 / Harvested from Czech Digital Mathematics Library
Publié le : 1990-01-01
Classification:  05A05,  06A06
@article{107363,
     author = {Milan R. Taskovi\'c},
     title = {Edge theorem for finite partially ordered sets},
     journal = {Archivum Mathematicum},
     volume = {026},
     year = {1990},
     pages = {1-5},
     zbl = {0727.06005},
     mrnumber = {1188068},
     language = {en},
     url = {http://dml.mathdoc.fr/item/107363}
}
Tasković, Milan R. Edge theorem for finite partially ordered sets. Archivum Mathematicum, Tome 026 (1990) pp. 1-5. http://gdmltest.u-ga.fr/item/107363/

K. Baclawski; A. Björner Fixed points in partially ordered sets, Advances in Math. 31 (1979), 263-287. (1979) | MR 0532835

C. Blair; A. Roth An extension and simple proof of a constrained lattice fixed point theorem, Algebra Universalis 9 (1979), 131 -132. (1979) | MR 0508675 | Zbl 0421.06005

J. Klimeš Fixed edge theorems for complete lattices, Arch. Math. 4. scripta, 17 (1981), 227-234. (1981)

D. Kurepa Fixpoints of decreasing mappings of ordered sets, Publ. Inst. Math., 32 (1975), 111-116. (1975) | MR 0369189 | Zbl 0339.54037

I. Rival A fixed point theorem for finite partially ordered sets, J. Combin. Theory, 21 (A), 1976, 309-318. (1976) | MR 0419308

A. Tarski A lattice theoretical fixpoint theorem and its applications, Pacific J. Math., 5 (1955), 283-309. (1955) | MR 0074376 | Zbl 0064.26004

A. Björner Order-reversing maps and unique fixed points in complete lattices, Algebra Universalis 12 (1981), 402-403. (1981) | MR 0624306