@article{107363, author = {Milan R. Taskovi\'c}, title = {Edge theorem for finite partially ordered sets}, journal = {Archivum Mathematicum}, volume = {026}, year = {1990}, pages = {1-5}, zbl = {0727.06005}, mrnumber = {1188068}, language = {en}, url = {http://dml.mathdoc.fr/item/107363} }
Tasković, Milan R. Edge theorem for finite partially ordered sets. Archivum Mathematicum, Tome 026 (1990) pp. 1-5. http://gdmltest.u-ga.fr/item/107363/
Fixed points in partially ordered sets, Advances in Math. 31 (1979), 263-287. (1979) | MR 0532835
An extension and simple proof of a constrained lattice fixed point theorem, Algebra Universalis 9 (1979), 131 -132. (1979) | MR 0508675 | Zbl 0421.06005
Fixed edge theorems for complete lattices, Arch. Math. 4. scripta, 17 (1981), 227-234. (1981)
Fixpoints of decreasing mappings of ordered sets, Publ. Inst. Math., 32 (1975), 111-116. (1975) | MR 0369189 | Zbl 0339.54037
A fixed point theorem for finite partially ordered sets, J. Combin. Theory, 21 (A), 1976, 309-318. (1976) | MR 0419308
A lattice theoretical fixpoint theorem and its applications, Pacific J. Math., 5 (1955), 283-309. (1955) | MR 0074376 | Zbl 0064.26004
Order-reversing maps and unique fixed points in complete lattices, Algebra Universalis 12 (1981), 402-403. (1981) | MR 0624306