@article{107347, author = {Ji\v r\'\i\ Rosick\'y and V\v era Trnkov\'a}, title = {Representability of concrete categories by non-constant morphisms}, journal = {Archivum Mathematicum}, volume = {025}, year = {1989}, pages = {115-118}, zbl = {0708.18003}, mrnumber = {1189207}, language = {en}, url = {http://dml.mathdoc.fr/item/107347} }
Rosický, Jiří; Trnková, Věra. Representability of concrete categories by non-constant morphisms. Archivum Mathematicum, Tome 025 (1989) pp. 115-118. http://gdmltest.u-ga.fr/item/107347/
Are all limit-closed subcategories of locally presentable categories reflective?, Proc. Categ. Conf. Louvain-La-Neuve, 1987, Lecture Notes in Math. 1348, Springer-Verlag 1388, 1-18. (1987) | MR 0975956
Set theory, Academic Press, New York 1978. (1978) | MR 0506523 | Zbl 0419.03028
Stone spaces, Cambridge Univ. Press, Cambridge 1982. (1982) | MR 0698074 | Zbl 0499.54001
Each concrete category has a representation by $T_2$-paracompact topological spaces, Comment. Math. Univ. Carolinae 15 (1975), 655-663. (1975) | MR 0354806
Non-algebraic concrete categories, J. Pure Appl. Alg. 3 (1973), 95-102. (1973) | MR 0335594
Combinatorial, algebraic and topological representations of groups, semigroups and categories, North Holland, Amsterdam 1980. (1980) | MR 0563525
Non-constant continuous mappings of metric or compact Hausdorff spaces, Comment. Math. Univ. Carolinae 13 (1972), 283-295. (1972) | MR 0303486
Vsje malyje kategorii predstavimy nepreryvnymi nepostojannymi otobraženijami bikompaktov, DAN SSSR 230 (1976), 789-791. (1976) | MR 0417259