Representability of concrete categories by non-constant morphisms
Rosický, Jiří ; Trnková, Věra
Archivum Mathematicum, Tome 025 (1989), p. 115-118 / Harvested from Czech Digital Mathematics Library
Publié le : 1989-01-01
Classification:  03E55,  18B15,  18B30,  54C05
@article{107347,
     author = {Ji\v r\'\i\ Rosick\'y and V\v era Trnkov\'a},
     title = {Representability of concrete categories by non-constant morphisms},
     journal = {Archivum Mathematicum},
     volume = {025},
     year = {1989},
     pages = {115-118},
     zbl = {0708.18003},
     mrnumber = {1189207},
     language = {en},
     url = {http://dml.mathdoc.fr/item/107347}
}
Rosický, Jiří; Trnková, Věra. Representability of concrete categories by non-constant morphisms. Archivum Mathematicum, Tome 025 (1989) pp. 115-118. http://gdmltest.u-ga.fr/item/107347/

J. Adámek J. Rosický; V. Trnková Are all limit-closed subcategories of locally presentable categories reflective?, Proc. Categ. Conf. Louvain-La-Neuve, 1987, Lecture Notes in Math. 1348, Springer-Verlag 1388, 1-18. (1987) | MR 0975956

T. Jech Set theory, Academic Press, New York 1978. (1978) | MR 0506523 | Zbl 0419.03028

P. T. Johnstone Stone spaces, Cambridge Univ. Press, Cambridge 1982. (1982) | MR 0698074 | Zbl 0499.54001

V. Koubek Each concrete category has a representation by $T_2$-paracompact topological spaces, Comment. Math. Univ. Carolinae 15 (1975), 655-663. (1975) | MR 0354806

L. Kučera; A. Pultr Non-algebraic concrete categories, J. Pure Appl. Alg. 3 (1973), 95-102. (1973) | MR 0335594

A. Pultr; V. Trnková Combinatorial, algebraic and topological representations of groups, semigroups and categories, North Holland, Amsterdam 1980. (1980) | MR 0563525

V. Trnková Non-constant continuous mappings of metric or compact Hausdorff spaces, Comment. Math. Univ. Carolinae 13 (1972), 283-295. (1972) | MR 0303486

V. Trnková Vsje malyje kategorii predstavimy nepreryvnymi nepostojannymi otobraženijami bikompaktov, DAN SSSR 230 (1976), 789-791. (1976) | MR 0417259