Remarks on Hamiltonian properties of squares of graphs
Schaar, Günter
Archivum Mathematicum, Tome 025 (1989), p. 61-72 / Harvested from Czech Digital Mathematics Library
Publié le : 1989-01-01
Classification:  05C45
@article{107340,
     author = {G\"unter Schaar},
     title = {Remarks on Hamiltonian properties of squares of graphs},
     journal = {Archivum Mathematicum},
     volume = {025},
     year = {1989},
     pages = {61-72},
     zbl = {0722.05048},
     mrnumber = {1189200},
     language = {en},
     url = {http://dml.mathdoc.fr/item/107340}
}
Schaar, Günter. Remarks on Hamiltonian properties of squares of graphs. Archivum Mathematicum, Tome 025 (1989) pp. 61-72. http://gdmltest.u-ga.fr/item/107340/

G. Chartrand A. M. Hobbs H. A. Jung S. F. Kapoor; C. St. J. A. Nash-Williams The square of a block is Hamiltonian connected;, J. Combinatorial Theory B, 16, 1974, 290-292. (1974) | MR 0345865

H. Fleischner On spanning subgraphs of a connected bridgeless graph and their application to DT-graphs;, J. Combinatorial Theory B, 16, No. 1, 1974, 17-28. (1974) | MR 0332572 | Zbl 0256.05120

H. Fleischner The square of every two-connected graph is Hamiltonian;, J. Combinatorial Theory 3, 16, No. 1, 1974, 29-34. (1974) | MR 0332573 | Zbl 0256.05121

C. St. J. A. Nash-Williams Problem No. 48; Theory of graphs, (edited by P. Erdös and G. Katona), New York, Academic Press 1968. (1968)

M. D. Plummer On minimal blocks;, Trans. Ameг. Math. Soc. 134, 1968, 85-94. (1968) | MR 0228369 | Zbl 0187.21101

St. Říha A new proof of the theorem by Fleischner;, to appeaг.

M. Sekanina Problem No. 28, Theory of graphs and its Applications;, Czechoslovak. Acad. of Sciences, Prague, 1964. (1964)

Z. Skupien T. Traczyk , Personal communication.