On equality of edge-connectivity and minimum degree of a graph
Plesník, Ján ; Znám, Štefan
Archivum Mathematicum, Tome 025 (1989), p. 19-25 / Harvested from Czech Digital Mathematics Library
Publié le : 1989-01-01
Classification:  05C35,  05C38,  05C40
@article{107335,
     author = {J\'an Plesn\'\i k and \v Stefan Zn\'am},
     title = {On equality of edge-connectivity and minimum degree of a graph},
     journal = {Archivum Mathematicum},
     volume = {025},
     year = {1989},
     pages = {19-25},
     zbl = {0731.05035},
     mrnumber = {1189195},
     language = {en},
     url = {http://dml.mathdoc.fr/item/107335}
}
Plesník, Ján; Znám, Štefan. On equality of edge-connectivity and minimum degree of a graph. Archivum Mathematicum, Tome 025 (1989) pp. 19-25. http://gdmltest.u-ga.fr/item/107335/

M. Behzad G. Chartrand; L. Lesniak-Foster Graphs and Digraphs, Prindle, Weber and Schmidt, Boston, 1979. (1979) | MR 0525578

B. Bollobás On graphs with equal edge connectivity and minimum degree, Discrete Math. 28 (1979), 321-323. (1979) | MR 0548631

G. Chartrand A graph-theoretical approach to a communications problem, SIAM J. Appl. Math. 14 (1966), 778-781. (1966) | MR 0207585

A. H. Esfahanian Lower bounds on the connectivities of a graph, J. Graph Theory 9 (1985), 503-511. (1985) | MR 0890241 | Zbl 0664.05050

D. L. Goldsmith; R. C. Entringer A sufficient condition for equality of edge-connectivity and minimum degree of a graph, J. Graph Theory 3 (1979), 251-255. (1979) | MR 0542546 | Zbl 0417.05040

L. Lesniak Results on the edge-connectivity of graphs, Discrete Math. 8 (1974), 351-354. (1974) | MR 0335333 | Zbl 0277.05123

J. Plesník Critical graphs of given diameter, Acta Fac. R. N. Univ. Comen. Math. 30 (1975), 71-93. (1975) | MR 0398904

T. Soneoka H. Nakada M. Imase; C. Peyrat Sufficient conditions for maximally connected dense graphs, preprint. | MR 0874923

L. Volkmann Bemerkungen zum p-fachen Kantenzusammenhang von Graphen, An. Univ. Bucuresti Mat., to appear. | MR 0978449 | Zbl 0649.05046

L. Volkmann Edge-connectivity in partite graphs, J. Graph Theory, to appear.