Multiscale deformation analysis by Cauchy-Navier wavelets
Abeyratne, M. K. ; Freeden, W. ; Mayer, C.
J. Appl. Math., Tome 2003 (2003) no. 1, p. 605-645 / Harvested from Project Euclid
A geoscientifically relevant wavelet approach is established for the classical (inner) displacement problem corresponding to a regular surface (such as sphere, ellipsoid, and actual earth surface). Basic tools are the limit and jump relations of (linear) elastostatics. Scaling functions and wavelets are formulated within the framework of the vectorial Cauchy-Navier equation. Based on appropriate numerical integration rules, a pyramid scheme is developed providing fast wavelet transform (FWT). Finally, multiscale deformation analysis is investigated numerically for the case of a spherical boundary.
Publié le : 2003-12-31
Classification:  74B05,  65T60,  86A30,  47H50
@article{1073335354,
     author = {Abeyratne, M. K. and Freeden, W. and Mayer, C.},
     title = {Multiscale deformation analysis by Cauchy-Navier wavelets},
     journal = {J. Appl. Math.},
     volume = {2003},
     number = {1},
     year = {2003},
     pages = { 605-645},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1073335354}
}
Abeyratne, M. K.; Freeden, W.; Mayer, C. Multiscale deformation analysis by Cauchy-Navier wavelets. J. Appl. Math., Tome 2003 (2003) no. 1, pp.  605-645. http://gdmltest.u-ga.fr/item/1073335354/