@article{107245, author = {Stan\v ek, Svatoslav and Jarom\'\i r Vosmansk\'y}, title = {Transformations of linear second order ordinary differential equations}, journal = {Archivum Mathematicum}, volume = {022}, year = {1986}, pages = {55-59}, zbl = {0644.34029}, mrnumber = {868119}, language = {en}, url = {http://dml.mathdoc.fr/item/107245} }
Staněk, Svatoslav; Vosmanský, Jaromír. Transformations of linear second order ordinary differential equations. Archivum Mathematicum, Tome 022 (1986) pp. 55-59. http://gdmltest.u-ga.fr/item/107245/
Zeros of the Böcher - function and its derivative with respect to differential equation $y" + p(x) y = 0$ II, (to appear).
Linear Differential Transformations of the Second Order, The English Univ. Press, (1971) London. (1971) | MR 0463539
Monotonicity properties of the linear combination of derivatives of some special functions, (to appear). Arch. Math. (Brno), 21, (1985), 147 - 157. (1985) | MR 0833125
Higher transcendental functions, vol. 2, Mc Graw-Hill, New York, 1954. (1954)
Generalization of amplitude, phase and accompanying differential equations, Acta Univ. Palackianae Olomucensis, FRN, 33, (1971), 7-17. (1971) | MR 0352583
Consistency invariants and transformations between second order linear differential equations, Preprint.
L'équation associée dans la théorie des transformations des équations différentielles du second ordre, Acta Univ. Palackianae Olomucensis, 12, 0963), 45 - 62. | MR 0276527 | Zbl 0256.34005
On the zeros of a function related to Bessel functions, Arch. Math. (Brno), 18, (1982), 22-34. (1982) | MR 0683343 | Zbl 0504.33005
On a certain transformation of the solution of two second order differential equations, Acta Univ. Palackianae Olomucensis, FRN, 76, math. XXII, (1983), 81-90. (1983) | MR 0744702
The monotonicity of extremants of integrals of the differential equation y'' + q(t)y = 0, Arch. Math. (Brno), 2, (1966), 105-111. (1966) | MR 0216072 | Zbl 0219.34035
Certain higher monotonicity properties of i-th derivatives of solutions of y'' + a(t) y' + b(t) y = 0, Arch. Math. (Brno), X, (1974), 87-102. (1974) | MR 0399578