Hopf bifurcation in symmetric systems
Vanderbauwhede, André L.
Archivum Mathematicum, Tome 022 (1986), p. 29-53 / Harvested from Czech Digital Mathematics Library
Publié le : 1986-01-01
Classification:  34C25,  37G99
@article{107244,
     author = {Andr\'e L. Vanderbauwhede},
     title = {Hopf bifurcation in symmetric systems},
     journal = {Archivum Mathematicum},
     volume = {022},
     year = {1986},
     pages = {29-53},
     zbl = {0628.58035},
     mrnumber = {868118},
     language = {en},
     url = {http://dml.mathdoc.fr/item/107244}
}
Vanderbauwhede, André L. Hopf bifurcation in symmetric systems. Archivum Mathematicum, Tome 022 (1986) pp. 29-53. http://gdmltest.u-ga.fr/item/107244/

Th. Bröckner; L. Lander Differentiable germs and catastrophes, LMS Lecture Notes Series 17, Cambridge University Pгess, Cambridge, 1975. (1975)

M. Golubitsky; I. Stewart Hopf bifurcation in the presence of symmetry, Arch. Rat. Mech. Anal. 87 (1985), 107-165. (1985) | MR 0765596 | Zbl 0588.34030

G. Iooss Bifurcation and transition to turbulence in hydrodynamics, Lecture Notes in Math. 1057, Springer-Verlag, 1984, p. 152-201. (1984) | Zbl 0537.58037

G. Schwarz Smooth functions invariant under the action of a compact Lie group, Topology, 14 (1975), 63-68. (1975) | MR 0370643 | Zbl 0297.57015

E. Takigawa Bifurcation of waves of reaction-diffusion equations on axisymmetric domains, PhD Thesis, Brown University, 1981. (1981)

A. Vanderbauwhede Local bifurcation and symmetry, Research Notes in Math., vol. 75, Pitman, London, 1982. (1982) | Zbl 0539.58022

A. Vanderbauwhede Bifurcation of periodic solutions in a rotationally symmetric oscillation system, J. Reine Augew. Math. 360 (1985), 1-18. (1985) | MR 0799655 | Zbl 0555.34036

S. A. Van Gils Some studies in dynamical system theory, PhD Thesis, Delft, 1984. (1984)

H. Whitney Differentiable even functions, Duke Math. J. 10 (1943), 159-160. (1943) | MR 0007783 | Zbl 0063.08235