A Leighton-Borůvka formula for Morse conjugate points
Guggenheimer, Heinrich W.
Archivum Mathematicum, Tome 021 (1985), p. 189-193 / Harvested from Czech Digital Mathematics Library
Publié le : 1985-01-01
Classification:  34C05,  34H05
@article{107233,
     author = {Heinrich W. Guggenheimer},
     title = {A Leighton-Bor\r uvka formula for Morse conjugate points},
     journal = {Archivum Mathematicum},
     volume = {021},
     year = {1985},
     pages = {189-193},
     zbl = {0585.34024},
     mrnumber = {833130},
     language = {en},
     url = {http://dml.mathdoc.fr/item/107233}
}
Guggenheimer, Heinrich W. A Leighton-Borůvka formula for Morse conjugate points. Archivum Mathematicum, Tome 021 (1985) pp. 189-193. http://gdmltest.u-ga.fr/item/107233/

O. Borůvka Lineare Differentialtransformationen 2. Ordnung, VEB Deutsch. Verlag Wiss. Berlin 1967. (1967) | MR 0236448

R. Freedman Oscillation theory of systems of ordinary differential equations, Thesis, PINY 1979. (1979)

H. Guggenheimer On focal points and limit behavior of solutions of differential equations, Arch. Math. (Brno) 14 (1978) 139-144. (1978) | MR 0508430

14] H. Guggenheimer Geometric theory of differential equations, III. Second Order Equations of the Reals, Arch. rat. Mech. Anal. 41 (1971) 219-240. (1971) | MR 0357939

H. Guggenheimer Applicable Geometry, Krieger, Huntington NY 1977. (1977) | MR 0442821 | Zbl 0396.52001

W. Leighton Principal quadratic functionals, TAMS 67 (1949) 253-274. (1949) | MR 0034535 | Zbl 0041.22404

A. C. Peterson On the monotone nature of boundary value functions for n-th order differential equations, Canad. Math. Bull. 15 (1972) 253-258. (1972) | MR 0310324 | Zbl 0236.34019

W. T. Reid Ordinary Differential Equations, Wiley NY 1971. (1971) | MR 0273082 | Zbl 0212.10901