On the terminal value problem for differential equations with deviating arguments
Staïkos, Vasilios Anast. ; Tsamatos, Panagiotis Ch.
Archivum Mathematicum, Tome 021 (1985), p. 43-49 / Harvested from Czech Digital Mathematics Library
Publié le : 1985-01-01
Classification:  34A12,  34K05
@article{107214,
     author = {Vasilios Anast. Sta\"\i kos and Panagiotis Ch. Tsamatos},
     title = {On the terminal value problem for differential equations with deviating arguments},
     journal = {Archivum Mathematicum},
     volume = {021},
     year = {1985},
     pages = {43-49},
     zbl = {0586.34056},
     mrnumber = {818306},
     language = {en},
     url = {http://dml.mathdoc.fr/item/107214}
}
Staïkos, Vasilios Anast.; Tsamatos, Panagiotis Ch. On the terminal value problem for differential equations with deviating arguments. Archivum Mathematicum, Tome 021 (1985) pp. 43-49. http://gdmltest.u-ga.fr/item/107214/

C Avramescu Sur l'existence des solutions convergentes des systèmes d'équations différentielles non linéaires, Ann. Mat. Pura Appl., 81 (1969), 147-167. (1969) | MR 0249738 | Zbl 0196.10701

T. G. Hallam A comparison principle for terminal value problems in ordinary differential equations, Trans. Amer. Math. Soc., 169 (1972), 49-57. (1972) | MR 0306611 | Zbl 0257.34012

T. G. Hallam G. Ladas; V. Lakshmikantham On the asymptotic behavior of functional differential equations, SIAM J. Math. Anal., 3 (1972), 58-64. (1972) | MR 0315247

J. Kurzweil On solutions of nonautonomous linear delayed differential equations, which are defined and exponentially bounded for $t \to - \infty$, Časopis Pěst. Mat., 96 (1971), 229-238. (1971) | MR 0298164 | Zbl 0218.34065

G. Ladas; V. Lakshmikantham Global existence and asymptotic equilibrium in Banach spaces, J. Indian Math. Soc., 36 (1972), 33-40. (1972) | MR 0318622 | Zbl 0273.34040

G. Ladas; V. Lakshmikantham Asymptotic equilibrium of ordinary differential systems, Applicable Anal., 5 (1975), 33-39. (1975) | MR 0508580 | Zbl 0344.34036

E.-B. Lim Asymptotic behavior of solutions of the functional differential equation $x' = A x(\lambda t) + B x(t)$, $\lambda > 0$, J. Math. Anal. Appl., 55 (1978), 794-806. (1978) | MR 0447749

A. R. Mitchell; R. W. Mitchell Asymptotic equilibrium of ordinary differential systems in a Banach space, Math. Systems Theory, 9 (1976), 308-314. (1976) | MR 0463603 | Zbl 0334.34052

L. Pandolfi Some Observations on the Asymptotic Behavior of the Solutions of the Equation $\dot{x} = A(t)x(\lambda t) + B(t)x(t)$, $\lambda > 0$, J. Math. Anal. Appl., 67 (1979), 483-489. (1979) | MR 0528702

V. A. Staikos Differential Equations with Deviating Arguments-Oscillation Theory, (unpublished manuscripts).

V. A. Staikos Asymptotic behavior and oscillation of the bounded solutions of differential equations with deviating arguments, (in Russian), Ukrain. Mat. Ž., 31 (1979), 705 - 716. (1979) | MR 0567287