Asymptotic nature of solutions of the equation $\dot z=f(t,z)$ with a complex valued function $f$
Kalas, Josef
Archivum Mathematicum, Tome 020 (1984), p. 83-94 / Harvested from Czech Digital Mathematics Library
Publié le : 1984-01-01
Classification:  34M99
@article{107190,
     author = {Josef Kalas},
     title = {Asymptotic nature of solutions of the equation $\dot z=f(t,z)$ with a complex valued function $f$},
     journal = {Archivum Mathematicum},
     volume = {020},
     year = {1984},
     pages = {83-94},
     zbl = {0564.34005},
     mrnumber = {784859},
     language = {en},
     url = {http://dml.mathdoc.fr/item/107190}
}
Kalas, Josef. Asymptotic nature of solutions of the equation $\dot z=f(t,z)$ with a complex valued function $f$. Archivum Mathematicum, Tome 020 (1984) pp. 83-94. http://gdmltest.u-ga.fr/item/107190/

Butlewski Z. O pewnym ruchu plaskim, Zeszyty Naukowe Polit. Poznanskiej, 2 (1957), 93-122. (1957)

Butlewski Z. Sur un mouvement plan, Ann. Polon. Math. 13 (1963), 139-161. (1963) | MR 0153936 | Zbl 0118.30503

Tesařová Z. The Riccati differential equation with complex-valued coefficients and application to the equation $x" + P(t)x' + Q(t)x= 0$, Arch. Math. (Brno) 18 (1982), 133-143. (1982) | MR 0682101

Kalas J. Asymptotic behaviour of the solutions of the equation dz/dt = f(t, z) with a complex-valued function f, Colloquia Mathematica Societatis János Bolyai, 30. QualitativeTheoгy of Differential Equations, Szeged (Hungary), 1979, pp. 431 -462. (1979) | MR 0680606

Kalas J. On the asymptotic behaviour of the equation dz/dt =f(t,z) with a complex-valued function f, Arch. Math. (Brao) 17 (1981), 11 -22. (1981) | MR 0672484 | Zbl 0475.34028

Kalas J. On certain asymptotic properties of the solutions of the equation $\dot{z} = f(t, z)$ with a complex-valued function f, Czech. Math. J., 33 (1983), 390-407. (1983) | MR 0718923

Kalas J. Asymptotic properties of the solutions of the equation $\dot{z} = f(t, z)$ with a complex-valued functionf, Arch. Math. (Brno) 17 (1981), 113-123. (1981) | MR 0672315

Kalas J. Asymptotic behaviour of equations $\dot{z} = q(t, z) - p(t) z^2$ and $\ddot{x} =x \varphi (t, \dot{x} x^{-1})$, Arch. Math. (Brno) 17 (1981), 191-206. (1981) | MR 0672659

Kalas J. On a „Liapunov-like" function for an equation $\dot{z} = f(t, z)$ with a complex-valued function f, Arch. Math. (Brno) 18 (1982), 65-76. (1982) | MR 0683347

Kulig C. On a system of differential equations, Zeszyty Naukowe Univ. Jagiellońskiego, Prace Mat., 77 (1963), 37-48. (1963) | MR 0204763 | Zbl 0267.34029

Ráb M. The Riccati differential equation with complex-valued coefficients, Czech. Math. J. 20 (1970), 491-503. (1970) | MR 0268452

Ráb M. Geometrical approach to the study of the Riccati differential equation with complex-valued coefficients, J. Diff. Equations 25 (1977), 108-114. (1977) | MR 0492454