Darboux transformations and isometric immersions of Riemannian products of space forms
He, Qun ; Shen, Yi-Bing
Kodai Math. J., Tome 25 (2002) no. 2, p. 321-340 / Harvested from Project Euclid
By using the Darboux transformation in Soliton theory, we give the explicit construction for local isometric immersions of the Riemannian product $M^{n_1}_1(c_1)\times M^{n_2}_2(c_2)$ into space forms $M^m(c)$ with flat normal bundle via purely algebraic algorithm.
Publié le : 2002-10-14
Classification: 
@article{1071674465,
     author = {He, Qun and Shen, Yi-Bing},
     title = {Darboux transformations and isometric immersions of Riemannian products of space forms},
     journal = {Kodai Math. J.},
     volume = {25},
     number = {2},
     year = {2002},
     pages = { 321-340},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1071674465}
}
He, Qun; Shen, Yi-Bing. Darboux transformations and isometric immersions of Riemannian products of space forms. Kodai Math. J., Tome 25 (2002) no. 2, pp.  321-340. http://gdmltest.u-ga.fr/item/1071674465/