Uniqueness of entire functions and fixed points
Chang, Jianming ; Fang, Mingliang
Kodai Math. J., Tome 25 (2002) no. 2, p. 309-320 / Harvested from Project Euclid
Let $f$ be a nonconstant entire function. %If $f(z)=z$ $\Longleftrightarrow $ $f'(z)=z$, and %$f'(z)=z$ $\Longrightarrow $ $f''(z)=z$, then $f\equiv f'$. In particular, If $f$, $f'$ and $f''$ have the same fixed points, then $f\equiv f'.$
Publié le : 2002-10-14
Classification: 
@article{1071674464,
     author = {Chang, Jianming and Fang, Mingliang},
     title = {Uniqueness of entire functions and fixed points},
     journal = {Kodai Math. J.},
     volume = {25},
     number = {2},
     year = {2002},
     pages = { 309-320},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1071674464}
}
Chang, Jianming; Fang, Mingliang. Uniqueness of entire functions and fixed points. Kodai Math. J., Tome 25 (2002) no. 2, pp.  309-320. http://gdmltest.u-ga.fr/item/1071674464/