Growth of solutions of an $n$-th order linear differential equation with entire coefficients
Bela\"{i}di, Benharrat ; Hamouda, Saada
Kodai Math. J., Tome 25 (2002) no. 2, p. 240-245 / Harvested from Project Euclid
We consider a differential equation $f^{\left( n\right) }+A_{n-1}\left( z\right) f^{\left( n-1\right) }+...+A_{1}\left( z\right) f^{^{/}}+A_{0}\left( z\right) f=0,$ where $A_{0}\left( z\right) ,...,A_{n-1}\left( z\right) $ are entire functions with $A_{0}\left( z\right) \hbox{$/\hskip -11pt\equiv$}0$. Suppose that there exist a positive number $\mu ,$\ and a sequence $\left( z_{j}\right) _{j\in N}$ with $\stackunder{j\rightarrow +\infty }{\lim }z_{j}=\infty ,$ \ and also two real numbers $\alpha ,\beta $ $\left( \ 0\leq \beta \alpha \right) $\ such that \ $\left| A_{0}\left( z_{j}\right) \right| \geq e^{\alpha \left| z_{j}\right| ^{\mu }}\quad $and$% \quad \left| A_{k}\left( z_{j}\right) \right| \leq e^{\beta \left| z_{j}\right| ^{\mu }}$ as $\ j\rightarrow +\infty $ $\left( k=1,...,n-1\right) $. We prove that all solutions \ $f% \hbox{$/\hskip -11pt\equiv$}0$ of this equation are of infinite order. This result is a generalization of one theorem of Gundersen $\left( \left[ 3\right] ,\text{ }% p.\text{ }418\right) .$
Publié le : 2002-10-14
Classification: 
@article{1071674457,
     author = {Bela\"{i}di, Benharrat and Hamouda, Saada},
     title = {Growth of solutions of an $n$-th order linear differential equation with entire coefficients},
     journal = {Kodai Math. J.},
     volume = {25},
     number = {2},
     year = {2002},
     pages = { 240-245},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1071674457}
}
Bela\"{i}di, Benharrat; Hamouda, Saada. Growth of solutions of an $n$-th order linear differential equation with entire coefficients. Kodai Math. J., Tome 25 (2002) no. 2, pp.  240-245. http://gdmltest.u-ga.fr/item/1071674457/