On a “Liapunov like” function for an equation $\dot z=f(t,z)$ with a complex-valued function $f$
Kalas, Josef
Archivum Mathematicum, Tome 018 (1982), p. 65-76 / Harvested from Czech Digital Mathematics Library
Publié le : 1982-01-01
Classification:  34D05,  34D20,  34E05,  34M99
@article{107125,
     author = {Josef Kalas},
     title = {On a ``Liapunov like'' function for an equation $\dot z=f(t,z)$ with a complex-valued function $f$},
     journal = {Archivum Mathematicum},
     volume = {018},
     year = {1982},
     pages = {65-76},
     zbl = {0498.34039},
     mrnumber = {683347},
     language = {en},
     url = {http://dml.mathdoc.fr/item/107125}
}
Kalas, Josef. On a “Liapunov like” function for an equation $\dot z=f(t,z)$ with a complex-valued function $f$. Archivum Mathematicum, Tome 018 (1982) pp. 65-76. http://gdmltest.u-ga.fr/item/107125/

Hartman P. Ordinary Differential Equations, Wiley, New York/London/Sydney, 1964. (1964) | MR 0171038 | Zbl 0125.32102

Kalas J. Asymptotic behaviour of the solutions of the equation dz/dt = f(t, z) with a complex-valued function f, Proceedings of the Colloquium on Qualitative Theory of Differential Equations, August 1979, Szeged-Hungary, Seria Colloquia Mathematica Societatis János Bolyai & North-Holland Publishing Company, pp. 431-462. (1979) | MR 0680606

Kalas J. On the asymptotic behaviour of the equation dz/dt =f(t,z) with a complex-valued function f, Arch. Math. (Brno) 17 (1981), 11-22. (1981) | MR 0672484 | Zbl 0475.34028

Kalas J. On certain asymptotic properties of the solutions of the equation $\dot{z} = f(t, z)$ with a complex-valued function f, Czech. Math. Journal, to appear. | MR 0718923

Kalas J. Asymptotic properties of the solutions of the equation $\dot{z} = f(t, z)$ with a complex-valued function f, Arch. Math. (Brno) 17 (1981), 113-124. (1981) | MR 0672315

Kalas J. Asymptotic behaviour of equations $\dot{z] = q(t, z) - p(t) z^2$ and $\ddot{x} = x \varphi(t, \dot{x} x^{-1})$, Arch. Math. (Brno) 17 (1981), 191-206. (1981) | MR 0672659

Ráb M. The Riccati differential equation with complex-valued coefficients, Czech. Math. Journal 20 (1970), 491-503. (1970) | MR 0268452

Ráb M. Geometrical approach to the study of the Riccati differential equation with complex-valued coefficients, J. Diff. Equations 25 (1977), 108-114. (1977) | MR 0492454

Sverdlove R. Vector fields defined by complex functions, J. Differential Equations 34 (1979), 427-439. (1979) | MR 0555320 | Zbl 0431.34034