@article{107030, author = {Ivo Res}, title = {Asymptotic properties of solutions of the differential equation $\{A^{-1}\_{n-1}(t)\dots[A^{-1}\_1(t)y']'\dots\}'=A\_n(t)y+F(t)$}, journal = {Archivum Mathematicum}, volume = {015}, year = {1979}, pages = {119-128}, zbl = {0432.34036}, mrnumber = {563144}, language = {en}, url = {http://dml.mathdoc.fr/item/107030} }
Res, Ivo. Asymptotic properties of solutions of the differential equation $\{A^{-1}_{n-1}(t)\dots[A^{-1}_1(t)y']'\dots\}'=A_n(t)y+F(t)$. Archivum Mathematicum, Tome 015 (1979) pp. 119-128. http://gdmltest.u-ga.fr/item/107030/
Les dèvelopements asymptotiques des solutions de l'equation, Arch. Math. Brno, T2 (1966). (1966) | MR 0199488
Über lineare Perturbationen eines Systems von linearen Differentialgleichungen, Czech. Mat. Journ. Praha, T 8 (83) (1953). (1953) | MR 0102633
Asymptotic expansion of solutions of the equation $(p(x) y')' -q(x)y = 0$ with complex-valued coefficients, Arch. Math. Brno, | MR 0315231
Asymptotische Eìgenschaften einer perturbierten interierten Differentialgleichung, Arch. Math. Brno, T X (1974), 149-158. (1974) | MR 0477314
Asymptotické vlastnosti řešení diferenciálni rovnice ${A_{n-1}^{-1} (x) \ldots [A_1^{-1} (x) y']' \ldots }'=A_n (x) y$, Acta Universitatis Agriculturae Brno, Ser. C. 43, (1974, 4) 365--372. (1974)
Serie asintotische per una classe di equationi differenziali de 2° ordine, Rendiconti del Sem. Math. Torino, Vol. 23 (1963-1964). (1963) | MR 0173810