On the Inhomogeneous Hall's Ray of Period-One Quadratics
Pinner, Christopher G. ; Wolczuk, Dan
Experiment. Math., Tome 10 (2001) no. 3, p. 487-496 / Harvested from Project Euclid
For quadratics with period-one negative continued fraction expansions, X\theta =\frac{1}{ a-{\dfrac{\mathstrut 1}{a-{\dfrac{\mathstrut 1}{a- \cdots }}}}}, ¶ we show that the inhomogeneous Lagrange spectrum, \bL (\theta) :=\bigl\{ \liminf\nolimits_{|n|\rightarrow \infty} |n|@\|n\theta -\gamma\| : \gamma \in \funnyR,\; \gamma \not\in \funnyZ+\theta \funnyZ\bigr\}, ¶ contains an inhomogeneous Hall's ray $[0,c(\theta)]$ with $$c(\theta)=\tfrac{1}{4}\bigl(1-O(a^{-1/2})\bigr)\hbox{.} ¶ We describe gaps in the spectrum showing that this is essentially best possible. Pictures of computed spectra are included. Investigating such pictures led us to these results.
Publié le : 2001-05-14
Classification: 
@article{1069855248,
     author = {Pinner, Christopher G. and Wolczuk, Dan},
     title = {On the Inhomogeneous Hall's Ray of Period-One Quadratics},
     journal = {Experiment. Math.},
     volume = {10},
     number = {3},
     year = {2001},
     pages = { 487-496},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1069855248}
}
Pinner, Christopher G.; Wolczuk, Dan. On the Inhomogeneous Hall's Ray of Period-One Quadratics. Experiment. Math., Tome 10 (2001) no. 3, pp.  487-496. http://gdmltest.u-ga.fr/item/1069855248/