Large deviations in first-passage percolation
Chow, Yunshyong ; Zhang, Yu
Ann. Appl. Probab., Tome 13 (2003) no. 1, p. 1601-1614 / Harvested from Project Euclid
Consider the standard first-passage percolation on ${\Z}^d$, $d\geq 2$. Denote by $\phi_{0,n}$ the face--face first-passage time in $[0,n]^d$. It is well known that \[ \lim_{n\rightarrow \infty} {\phi_{0,n}\over n}=\mu(F) \qquad \mbox{a.s. and in } L_1, \] where $F$ is the common distribution on each edge. In this paper we show that the upper and lower tails of $\phi_{0,n}$ are quite different when $\mu(F)>0$. More precisely, we can show that for small $\varepsilon>0$, there exist constants $\alpha(\varepsilon, F)$ and $\beta (\varepsilon, F)$ such that \[ \lim_{n\rightarrow\infty}{-1\over n} \log P \left( \phi_{0,n}\leq n(\mu -\varepsilon) \right) = \alpha (\varepsilon, F) \] and \[ \lim_{n\rightarrow\infty}{-1\over n^d} \log P \left(\phi_{0,n}\geq n(\mu +\varepsilon) \right)= \beta (\varepsilon, F). \]
Publié le : 2003-11-14
Classification:  First-passage percolation,  large deviations,  60K35
@article{1069786513,
     author = {Chow, Yunshyong and Zhang, Yu},
     title = {Large deviations in first-passage percolation},
     journal = {Ann. Appl. Probab.},
     volume = {13},
     number = {1},
     year = {2003},
     pages = { 1601-1614},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1069786513}
}
Chow, Yunshyong; Zhang, Yu. Large deviations in first-passage percolation. Ann. Appl. Probab., Tome 13 (2003) no. 1, pp.  1601-1614. http://gdmltest.u-ga.fr/item/1069786513/