Sharp asymptotic results for simplified mutation-selection algorithms
Bérard, J. ; Bienvenüe, A.
Ann. Appl. Probab., Tome 13 (2003) no. 1, p. 1534-1568 / Harvested from Project Euclid
We study the asymptotic behavior of a mutation--selection genetic algorithm on the integers with finite population of size $p\ge 1$. The mutation is defined by the steps of a simple random walk and the fitness function is linear. We prove that the normalized population satisfies an invariance principle, that a large-deviations principle holds and that the relative positions converge in law. After $n$ steps, the population is asymptotically around $\sqrt{n}$ times the position at time $1$ of a Bessel process of dimension $2p-1$.
Publié le : 2003-11-14
Classification:  Genetic algorithm,  invariance principle,  large-deviations,  population dynamics,  random walks,  interacting particle systems,  60F05,  60F10,  60F17,  92D15
@article{1069786510,
     author = {B\'erard, J. and Bienven\"ue, A.},
     title = {Sharp asymptotic results for simplified mutation-selection algorithms},
     journal = {Ann. Appl. Probab.},
     volume = {13},
     number = {1},
     year = {2003},
     pages = { 1534-1568},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1069786510}
}
Bérard, J.; Bienvenüe, A. Sharp asymptotic results for simplified mutation-selection algorithms. Ann. Appl. Probab., Tome 13 (2003) no. 1, pp.  1534-1568. http://gdmltest.u-ga.fr/item/1069786510/