On Latin hypercube sampling
Loh, Wei-Liem
Ann. Statist., Tome 24 (1996) no. 6, p. 2058-2080 / Harvested from Project Euclid
This paper contains a collection of results on Latin hypercube sampling. The first result is a Berry-Esseen-type bound for the multivariate central limit theorem of the sample mean $\hat{\mu}_n$ based on a Latin hypercube sample. The second establishes sufficient conditions on the convergence rate in the strong law for $\hat{\mu}_n$. Finally motivated by the concept of empirical likelihood, a way of constructing nonparametric confidence regions based on Latin hypercube samples is proposed for vector means.
Publié le : 1996-10-14
Classification:  Berry-Esseen bound,  confidence regions,  Latin hypercube sampling,  multivariate central limit theorem,  Stein's method,  strong law of large numbers,  62D05,  62E20,  62G15
@article{1069362310,
     author = {Loh, Wei-Liem},
     title = {On Latin hypercube sampling},
     journal = {Ann. Statist.},
     volume = {24},
     number = {6},
     year = {1996},
     pages = { 2058-2080},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1069362310}
}
Loh, Wei-Liem. On Latin hypercube sampling. Ann. Statist., Tome 24 (1996) no. 6, pp.  2058-2080. http://gdmltest.u-ga.fr/item/1069362310/