@article{106913, author = {Murray G. Bell}, title = {Not all dyadic spaces are supercompact}, journal = {Commentationes Mathematicae Universitatis Carolinae}, volume = {031}, year = {1990}, pages = {775-779}, zbl = {0716.54017}, mrnumber = {1091375}, language = {en}, url = {http://dml.mathdoc.fr/item/106913} }
Bell, Murray G. Not all dyadic spaces are supercompact. Commentationes Mathematicae Universitatis Carolinae, Tome 031 (1990) pp. 775-779. http://gdmltest.u-ga.fr/item/106913/
Zur Theorie der topologischen Räume, (Doklady) Acad. Sci. URSS 11 (1936), 55-58. (1936) | Zbl 0014.13502
Not all compact spaces are supercompact, General Topology Appl. 8 (1978), 151-155. (1978) | MR 0474199
Polyadic spaces of arbitrary compactness numbers, Comment. Math. Univ. Carolinae 26 (1985), 353-361. (1985) | MR 0803933 | Zbl 0587.54039
Supercompact Spaces, Topology and its Applications 13 (1982), 21-32. (1982) | MR 0637424
Cartesian products and dyadic spaces, Fund. Math. 57 (1965), 287-304. (1965) | MR 0196692 | Zbl 0173.50603
Supercompactness and superextensions, in Contributions to extension theory of topological structures, Symp. Berlin 1967, Deutscher Verlag Wiss., Berlin 1969, 89-90. (1967) | MR 0244955
A nonsupercompact continuous image of a supercompact space, Houston J. Math. 5 (1979), 241-247. (1979) | MR 0546758
Compact topological groups are supercompact, Wiskundig Seminarium rapport nr. 81, Vrije Univ., Amsterdam 1978. (1978)
Linear extensions, linear averagings, and their application to linear topological classification of spaces of continuous functions, Dissertationes Math. 58, Warszawa 1968. (1968) | MR 0227751
Lectures on set theoretic topology, Regional Conf. Ser. in Math. No. 23, Amer. Math. Soc., Providence, RI, 1977. (1977) | MR 0367886
Compact metric spaces have binary bases, Fund. Math. 89 (1975), 81-91. (1975) | MR 0383351 | Zbl 0316.54030